京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2024, Vol. 38 ›› Issue (5): 129-136.DOI: 10.19491/j.issn.1001-9278.2024.05.022
• Review • Previous Articles
CHEN Xiaoqing1, LIANG Jiahao1,2(), XIE Wenyu2(
), SHAO Weiming3, WANG Ruzhen2, FU Wen3, CAI Yebin1
Received:
2023-10-07
Online:
2024-05-26
Published:
2024-05-20
CLC Number:
CHEN Xiaoqing, LIANG Jiahao, XIE Wenyu, SHAO Weiming, WANG Ruzhen, FU Wen, CAI Yebin. Preparation of electrospun photothermal conversion nanofibers and their application in solar⁃driven interface evaporation[J]. China Plastics, 2024, 38(5): 129-136.
纤维膜类型 | 纤维膜 | 制备方法 | 制备工艺及关键参数 | 纤维形貌 | 蒸发速率/ kg·m-2·h-1 | 光热转换效率/% |
---|---|---|---|---|---|---|
单层纤维膜 | PDA@CNT/PU复合膜[ | 静电纺丝+原位聚合 | U=15 kV、Q=1.2 mL/h静电纺制得PU/CNT纤维后置于pH=8.5的PDA溶液超声水浴6 h。 | 分层纳米结构,微纳级孔互相粘连 | 1.44 | 90.1 |
PAN@PPy复合膜[ | 静电纺丝+原位聚合 | U=22 kV、D=15 cm、Q=0.5 mL/h静电纺制得PPy纤维后,60 ℃干燥12 h使PAN聚合。 | 孔隙丰富、纤维表面粗糙 | 1.63 | 83.5 | |
PVA/GO复合膜[ | 静电纺丝法+热处理 | U=15 kV、D=15 cm、Q=0.7 mL/h静电纺制得PVA/GO纤维,180 ℃热处理30 min。 | 介孔丰富、密度低 | 1.42 | 94.2 | |
Janus结构纤维膜 | PPG@PU/PDMS@PU⁃CNTs复合膜[ | 两步静电纺丝 | U=12 kV、D=15 cm、Q=0.5 mL/h静电纺制备PPG@PU纤维膜,U=10 kV、D=15 cm、Q=1.8 mL/h静电纺制备PDMS@PU⁃CNTs。 | 三维微孔结构,纤维膜界面紧密连接 | 1.34 | — |
PMMA/PAN/CB复合膜[ | 静电纺丝+喷涂沉积 | 在以U=14 kV、D=15 cm、Q=1.6 mL/h静电纺制得的PAN纤维膜上纺PMMA纤维膜(U=15 kV、D=15 cm、Q=3 mL/h),CB悬浮液喷涂至膜表面。 | 高度开放的三维微孔纳米纤维结构 | 1.30 | 72.0 | |
CA/PAN/CNT复合膜[ | 静电纺丝+沉积 | 在以U=25 kV、D=15 cm、Q=1.0 mL/h静电纺制得的CA纤维膜上纺PAN纤维膜(U=18 kV、D=10 cm、Q=3 mL/h),CNT喷涂沉积在PAN膜表面。 | 无序填充的无纺布结构,碳纳米管附着在纤维表面 | 1.94 | 92.7 | |
TPC/CB复合膜[ | 静电纺丝+涂覆 | U=14 kV、D=28 cm、Q=0.5 mL/h静电纺制得TPC纤维膜,通过真空过滤和干燥涂覆上CB。 | 多孔胞腔结构,CB附着在纤维表面 | 1.80 | 97.2 | |
3D网孔纤维气凝胶 | PI/CNT纤维气凝胶[ | 静电纺丝+热亚胺化 | U=15 kV静电纺制得PI纤维,液氮冷却10 min后-20 ℃冷冻12 h,100、200、300 ℃热处理1 h。 | 三维网络结构,CNT均匀附着在纤维表面 | 2.08 | — |
全纤维气凝胶(AFA)[ | 静电纺丝+等离子体处理+电喷涂 | U=15 kV、D=15 cm、Q=0.8 mL/h静电纺制得AFA纤维,等离子体处理3 min和电喷涂30 min。 | 高孔隙率的三维多孔结构 | 1.43 | 86.5 |
纤维膜类型 | 纤维膜 | 制备方法 | 制备工艺及关键参数 | 纤维形貌 | 蒸发速率/ kg·m-2·h-1 | 光热转换效率/% |
---|---|---|---|---|---|---|
单层纤维膜 | PDA@CNT/PU复合膜[ | 静电纺丝+原位聚合 | U=15 kV、Q=1.2 mL/h静电纺制得PU/CNT纤维后置于pH=8.5的PDA溶液超声水浴6 h。 | 分层纳米结构,微纳级孔互相粘连 | 1.44 | 90.1 |
PAN@PPy复合膜[ | 静电纺丝+原位聚合 | U=22 kV、D=15 cm、Q=0.5 mL/h静电纺制得PPy纤维后,60 ℃干燥12 h使PAN聚合。 | 孔隙丰富、纤维表面粗糙 | 1.63 | 83.5 | |
PVA/GO复合膜[ | 静电纺丝法+热处理 | U=15 kV、D=15 cm、Q=0.7 mL/h静电纺制得PVA/GO纤维,180 ℃热处理30 min。 | 介孔丰富、密度低 | 1.42 | 94.2 | |
Janus结构纤维膜 | PPG@PU/PDMS@PU⁃CNTs复合膜[ | 两步静电纺丝 | U=12 kV、D=15 cm、Q=0.5 mL/h静电纺制备PPG@PU纤维膜,U=10 kV、D=15 cm、Q=1.8 mL/h静电纺制备PDMS@PU⁃CNTs。 | 三维微孔结构,纤维膜界面紧密连接 | 1.34 | — |
PMMA/PAN/CB复合膜[ | 静电纺丝+喷涂沉积 | 在以U=14 kV、D=15 cm、Q=1.6 mL/h静电纺制得的PAN纤维膜上纺PMMA纤维膜(U=15 kV、D=15 cm、Q=3 mL/h),CB悬浮液喷涂至膜表面。 | 高度开放的三维微孔纳米纤维结构 | 1.30 | 72.0 | |
CA/PAN/CNT复合膜[ | 静电纺丝+沉积 | 在以U=25 kV、D=15 cm、Q=1.0 mL/h静电纺制得的CA纤维膜上纺PAN纤维膜(U=18 kV、D=10 cm、Q=3 mL/h),CNT喷涂沉积在PAN膜表面。 | 无序填充的无纺布结构,碳纳米管附着在纤维表面 | 1.94 | 92.7 | |
TPC/CB复合膜[ | 静电纺丝+涂覆 | U=14 kV、D=28 cm、Q=0.5 mL/h静电纺制得TPC纤维膜,通过真空过滤和干燥涂覆上CB。 | 多孔胞腔结构,CB附着在纤维表面 | 1.80 | 97.2 | |
3D网孔纤维气凝胶 | PI/CNT纤维气凝胶[ | 静电纺丝+热亚胺化 | U=15 kV静电纺制得PI纤维,液氮冷却10 min后-20 ℃冷冻12 h,100、200、300 ℃热处理1 h。 | 三维网络结构,CNT均匀附着在纤维表面 | 2.08 | — |
全纤维气凝胶(AFA)[ | 静电纺丝+等离子体处理+电喷涂 | U=15 kV、D=15 cm、Q=0.8 mL/h静电纺制得AFA纤维,等离子体处理3 min和电喷涂30 min。 | 高孔隙率的三维多孔结构 | 1.43 | 86.5 |
碳基纤维膜 | 纤维膜 特性 | 光热吸收体 结构 | 光源和 功率 | 光源功率/ W·cm-1 | 吸光波长/ nm | 蒸发速率/kg·m-2·h-1 | 光热转换 效率/% | 静电纺纤维膜制备参数 | 应用 |
---|---|---|---|---|---|---|---|---|---|
Janus PAN/CNT/CA复合膜[ | CNT/CA疏水,PAN亲水 | 搭桥式 | 太阳光 | 1 | 250~2 500 | 1.94 | 92.7 | CA纤维膜:U=25 kV、D=15 cm、Q=1.0 mL/h;PAN纤维膜:U=18 kV、D=10 cm、Q=3 mL/h | 海水淡化、光热发电、污水处理 |
Janus TPC/CB复合膜[ | CB疏水,TPC亲水 | 自漂浮 | 太阳光 | 1 | 200~2 500 | 1.80 | 97.2 | TPC纤维膜:U=14 kV、D=28 cm、Q=0.5 mL/h | 海水淡化 |
PAN/rGO复合膜[ | 亲水 | 加PS泡沫 | 太阳光 | 1 | 350~2 500 | 1.46 | 89.4 | PAN纤维膜:U=15 kV、Q=0.7 mL/h | 海水淡化 |
PAN/CNT复合膜[ | 亲水,柔性可清洗 | 加PS泡沫 | 太阳光 | 1 | 350~2 500 | 1.44 | 90.8 | PAN纤维膜:U=12 kV、D=15 cm、Q=0.5 mL/h | 海水淡化 |
PU/PDA@CNT复合膜[ | 亲水疏油,拉伸性能好 | 加PS泡沫 | — | — | — | 1.44 | 90.1 | PU纤维膜:U=15 kV、Q=1.2 mL/h | 含油污水净化 |
PVA/GO复合膜[ | 亲水 | 自漂浮 | — | — | — | 1.42 | 94.2 | PVA纤维膜:U=15 kV、D=15 cm、Q=0.7 mL/h | 海水淡化 |
PAN/SiO2/MWCNTs⁃COOH复合膜[ | 亲水,热稳定性好 | 加PS泡沫 | 太阳光 | 1 | 300~2 500 | 1.28 | 82.5 | PAN纤维膜:U=10 kV、D=10 cm、Q=0.7 mL/h | 海水淡化 |
PVDF/CB/PAN复合膜[ | CB/PAN亲水,PVDF疏水 | 自漂浮 | 太阳光 | 1 | 250~2 500 | 1.20 | 82.0 | — | 海水淡化、水净化处理 |
PAN@PPy复合膜[ | 亲水 | 自漂浮 | 太阳光 | 1 | 250~2 500 | 1.63 | 83.5 | PAN纤维膜:U=22 kV、D=15 cm、Q=0.5 mL/h | 污水处理 海水淡化 |
Janus PAN/CB/PMMA复合膜[ | CB/PMMA疏水,PAN亲水 | 自漂浮 | 太阳光 | 1 | 250~2 500 | 1.30 | 72.0 | PAN纤维膜:U=15 kV、D=15 cm、Q=3 mL/h | 海水淡化 |
PLA/中华墨[ | 亲水 | 加PS泡沫 | 太阳光 | 1 | 190~1 100 | 1.29 | 81.0 | PLA纤维膜:熔体电纺U=35 kV、D=7 cm、T=160 ℃ | 海水淡化 |
PIfAs/CNT气凝胶[ | 亲水 | 加PS泡沫 | 太阳光 | 1 | 250~2 500 | 2.08 | — | PI纤维膜:溶体电纺U=15 kV | 海水淡化 |
碳基纤维膜 | 纤维膜 特性 | 光热吸收体 结构 | 光源和 功率 | 光源功率/ W·cm-1 | 吸光波长/ nm | 蒸发速率/kg·m-2·h-1 | 光热转换 效率/% | 静电纺纤维膜制备参数 | 应用 |
---|---|---|---|---|---|---|---|---|---|
Janus PAN/CNT/CA复合膜[ | CNT/CA疏水,PAN亲水 | 搭桥式 | 太阳光 | 1 | 250~2 500 | 1.94 | 92.7 | CA纤维膜:U=25 kV、D=15 cm、Q=1.0 mL/h;PAN纤维膜:U=18 kV、D=10 cm、Q=3 mL/h | 海水淡化、光热发电、污水处理 |
Janus TPC/CB复合膜[ | CB疏水,TPC亲水 | 自漂浮 | 太阳光 | 1 | 200~2 500 | 1.80 | 97.2 | TPC纤维膜:U=14 kV、D=28 cm、Q=0.5 mL/h | 海水淡化 |
PAN/rGO复合膜[ | 亲水 | 加PS泡沫 | 太阳光 | 1 | 350~2 500 | 1.46 | 89.4 | PAN纤维膜:U=15 kV、Q=0.7 mL/h | 海水淡化 |
PAN/CNT复合膜[ | 亲水,柔性可清洗 | 加PS泡沫 | 太阳光 | 1 | 350~2 500 | 1.44 | 90.8 | PAN纤维膜:U=12 kV、D=15 cm、Q=0.5 mL/h | 海水淡化 |
PU/PDA@CNT复合膜[ | 亲水疏油,拉伸性能好 | 加PS泡沫 | — | — | — | 1.44 | 90.1 | PU纤维膜:U=15 kV、Q=1.2 mL/h | 含油污水净化 |
PVA/GO复合膜[ | 亲水 | 自漂浮 | — | — | — | 1.42 | 94.2 | PVA纤维膜:U=15 kV、D=15 cm、Q=0.7 mL/h | 海水淡化 |
PAN/SiO2/MWCNTs⁃COOH复合膜[ | 亲水,热稳定性好 | 加PS泡沫 | 太阳光 | 1 | 300~2 500 | 1.28 | 82.5 | PAN纤维膜:U=10 kV、D=10 cm、Q=0.7 mL/h | 海水淡化 |
PVDF/CB/PAN复合膜[ | CB/PAN亲水,PVDF疏水 | 自漂浮 | 太阳光 | 1 | 250~2 500 | 1.20 | 82.0 | — | 海水淡化、水净化处理 |
PAN@PPy复合膜[ | 亲水 | 自漂浮 | 太阳光 | 1 | 250~2 500 | 1.63 | 83.5 | PAN纤维膜:U=22 kV、D=15 cm、Q=0.5 mL/h | 污水处理 海水淡化 |
Janus PAN/CB/PMMA复合膜[ | CB/PMMA疏水,PAN亲水 | 自漂浮 | 太阳光 | 1 | 250~2 500 | 1.30 | 72.0 | PAN纤维膜:U=15 kV、D=15 cm、Q=3 mL/h | 海水淡化 |
PLA/中华墨[ | 亲水 | 加PS泡沫 | 太阳光 | 1 | 190~1 100 | 1.29 | 81.0 | PLA纤维膜:熔体电纺U=35 kV、D=7 cm、T=160 ℃ | 海水淡化 |
PIfAs/CNT气凝胶[ | 亲水 | 加PS泡沫 | 太阳光 | 1 | 250~2 500 | 2.08 | — | PI纤维膜:溶体电纺U=15 kV | 海水淡化 |
纤维膜 | 纤维膜 特性 | 光热吸收体结构 | 光源 | 光源功率/W·cm-1 | 吸光波长/nm | 蒸发速率/ kg·m-2·h-1 | 光热转换 效率/(%) | 静电纺纤维膜制备参数 | 应用 |
---|---|---|---|---|---|---|---|---|---|
PVDF/Ag复合膜[ | 疏水 | 自漂浮 | 紫外光 | 50 | 400 | 2.50 | 53 | PVDF纤维膜:U=25 kV、D=15 cm、Q=0.3 mL/h | 水净化、 海水淡化 |
PU/Al复合膜[ | 无 | 自漂浮 | 太阳光 | 1 | 250~2 500 | 1.72 | 89 | PU纤维膜:U=20 kV、D=10 cm、Q=0.1 mL/h | 海水淡化 |
PNIPAM/Fe3O4复合膜[ | 亲水 | 加PS 泡沫 | 太阳光 | 1 | 250~2 500 | 1.76 | — | — | 超咸水淡化 |
PVP/Ag/Cu2O复合膜[ | 无 | 加PS 泡沫 | 太阳光 | 1 | 250~2 000 | 1.35 | — | PVP纤维膜:U= 15 kV、D=15 cm | 水净化、 海水淡化 |
PS/Au复合膜[ | 亲水 | 加非织 造布 | 太阳光 | 1 | 400~1 000 | 1.85 | 99 | PS纤维膜:U=17 kV、D=15 cm、Q=1 mL/h | 海水淡化、 污水处理 |
纤维膜 | 纤维膜 特性 | 光热吸收体结构 | 光源 | 光源功率/W·cm-1 | 吸光波长/nm | 蒸发速率/ kg·m-2·h-1 | 光热转换 效率/(%) | 静电纺纤维膜制备参数 | 应用 |
---|---|---|---|---|---|---|---|---|---|
PVDF/Ag复合膜[ | 疏水 | 自漂浮 | 紫外光 | 50 | 400 | 2.50 | 53 | PVDF纤维膜:U=25 kV、D=15 cm、Q=0.3 mL/h | 水净化、 海水淡化 |
PU/Al复合膜[ | 无 | 自漂浮 | 太阳光 | 1 | 250~2 500 | 1.72 | 89 | PU纤维膜:U=20 kV、D=10 cm、Q=0.1 mL/h | 海水淡化 |
PNIPAM/Fe3O4复合膜[ | 亲水 | 加PS 泡沫 | 太阳光 | 1 | 250~2 500 | 1.76 | — | — | 超咸水淡化 |
PVP/Ag/Cu2O复合膜[ | 无 | 加PS 泡沫 | 太阳光 | 1 | 250~2 000 | 1.35 | — | PVP纤维膜:U= 15 kV、D=15 cm | 水净化、 海水淡化 |
PS/Au复合膜[ | 亲水 | 加非织 造布 | 太阳光 | 1 | 400~1 000 | 1.85 | 99 | PS纤维膜:U=17 kV、D=15 cm、Q=1 mL/h | 海水淡化、 污水处理 |
纤维膜 | 纤维膜 特性 | 光热吸收体结构 | 光源 | 光源功率/ W·cm-1 | 吸光波长 | 蒸发速率/ kg·m-2·h-1 | 光热转换 效率/% | 静电纺纤维膜制备参数 | 应用 |
---|---|---|---|---|---|---|---|---|---|
rTAC/Rb x WO3复合膜[ | 疏水 | 自漂浮 | 近红外光 | 0.217 | 380~2 200 | 3.13 | 90.4 | rTAC纤维膜:U=15 kV、 D=15 cm、Q=0.5 mL/h | 海水淡化 |
PLA/WO2.72复合膜[ | 疏水 | 自漂浮 | 红外光 | 0.294 | 780~2 500 | 3.81 | 81.4 | PLA纤维膜:电场强度 4 kV/cm、T=260°C | 海水淡化、 水蒸发 |
PAN@CuS复合膜[ | 亲水 | PS泡沫 | 太阳光 | 1 | 200~2 500 | 2.27 | 83.9 | PAN纤维膜:U=22 kV、 D=15 cm、Q=1 mL/h | 海水淡化、 废水净化 |
PAN/Co3S4复合膜[ | 亲水 | 自漂浮 | 太阳光 | 1 | 250~2 500 | 1.26 | 86.5 | PAN纤维膜:U=22 kV | 海水淡化 |
纤维膜 | 纤维膜 特性 | 光热吸收体结构 | 光源 | 光源功率/ W·cm-1 | 吸光波长 | 蒸发速率/ kg·m-2·h-1 | 光热转换 效率/% | 静电纺纤维膜制备参数 | 应用 |
---|---|---|---|---|---|---|---|---|---|
rTAC/Rb x WO3复合膜[ | 疏水 | 自漂浮 | 近红外光 | 0.217 | 380~2 200 | 3.13 | 90.4 | rTAC纤维膜:U=15 kV、 D=15 cm、Q=0.5 mL/h | 海水淡化 |
PLA/WO2.72复合膜[ | 疏水 | 自漂浮 | 红外光 | 0.294 | 780~2 500 | 3.81 | 81.4 | PLA纤维膜:电场强度 4 kV/cm、T=260°C | 海水淡化、 水蒸发 |
PAN@CuS复合膜[ | 亲水 | PS泡沫 | 太阳光 | 1 | 200~2 500 | 2.27 | 83.9 | PAN纤维膜:U=22 kV、 D=15 cm、Q=1 mL/h | 海水淡化、 废水净化 |
PAN/Co3S4复合膜[ | 亲水 | 自漂浮 | 太阳光 | 1 | 250~2 500 | 1.26 | 86.5 | PAN纤维膜:U=22 kV | 海水淡化 |
1 | 陈二烈. 全球淡水资源危机愈演愈烈[J]. 生态经济, 2022, 38(10): 5⁃8. |
CHEN E L. The global freshwater crisis is getting worse [J]. Ecological Economy, 2022, 38(10): 5⁃8. | |
2 | 郑智颖, 李凤臣, 李倩, 等. 海水淡化技术应用研究及发展现状[J]. 科学通报, 2016, 6(21): 2 344⁃2 370. |
ZHENG Z Y, LI F C, LI Q, et al. State⁃of⁃the⁃art of R&D on seawater desalination technology[J]. Science China Press, 2016, 6(21): 2 344⁃2 370. | |
3 | TAO P, NI G, SONG C, et al. Solar⁃driven interfacial evaporation[J]. Nature Energy, 2018, 3(12): 1 031⁃1 041. |
4 | SALEEM H, TRABZON L, KILIC A, et al. Recent advances in nanofibrous membranes: Production and applications in water treatment and desalination [J]. Desalination, 2020, 478: 114178. |
5 | ZHAO J, LIU Z, LOW S C, et al. Electrospinning technique meets solar energy: electrospun nanofiber⁃based evaporation systems for solar steam generation [J]. Advanced Fiber Materials, 2023: 1⁃31. |
6 | RODRíGUEZ⁃TOBíAS H, MORALES G, GRANDE D. Comprehensive review on electrospinning techniques as versatile approaches toward antimicrobial biopolymeric composite fibers [J]. Materials Science and Engineering: C, 2019, 101: 306⁃322. |
7 | HAMEED R M A, ZOULI N, ABUTALEB A, et al. Improving water desalination performance of electrospun carbon nanofibers by supporting with binary metallic carbide nanoparticles [J]. Ceramics International, 2022, 48(4): 4 741⁃4 753. |
8 | WU D, LIANG J, ZHANG D, et al. Solar evaporation and electricity generation of porous carbonaceous membrane prepared by electrospinning and carbonization [J]. Solar Energy Materials and Solar Cells, 2020, 215: 110591. |
9 | HUANG C, THOMAS N L. Fabrication of porous fibers via electrospinning: strategies and applications [J]. Polymer Reviews, 2020, 60(4): 595⁃647. |
10 | 何雪涛, 张毅, 莫振宇, 等. 熔体微分静电纺PBAT纤维膜的制备工艺研究 [J]. 中国塑料, 2022, 36(12): 1⁃5. |
HE X T, ZHANG Y, MO Z Y, et al. Preparation process of PBAT fiber membrane by melt differential electrospinning [J]. China Plastics, 2022, 36(12): 1⁃5. | |
11 | 孙少阳, 申莹, 王容容, 等. 静电纺聚乳酸纳米纤维的制备及其孔结构调控 [J]. 中国塑料, 2023, 37(4): 67⁃73. |
SUN S Y, SHEN Y, WANG R R, et al. Preparation and pore structure regulation of electrospun polylactic acid nanofibers [J]. China Plastics, 2023, 37(4): 67⁃73. | |
12 | KOU H, LIU Z, ZHU B, et al. Recyclable CNT⁃coupled cotton fabrics for low⁃cost and efficient desalination of seawater under sunlight [J]. Desalination, 2019, 462: 29⁃38. |
13 | HE M, LIU H, WANG L, et al. One⁃step fabrication of a stretchable and anti⁃oil⁃fouling nanofiber membrane for solar steam generation [J]. Materials Chemistry Frontiers, 2021, 5(9): 3 673⁃3 680. |
14 | REN X, CUI S, GUAN J, et al. PAN@PPy nanofibrous membrane with core⁃sheath structure for solar water evaporation [J]. Materials Letters, 2022, 313: 131807. |
15 | GUO X, GAO H, WANG S, et al. Scalable, flexible and reusable graphene oxide⁃functionalized electrospun nanofibrous membrane for solar photothermal desalination [J]. Desalination, 2020, 488: 114535. |
16 | LIU H, GU J, LIU Y, et al. Reconfiguration and self⁃healing integrated Janus electrospinning nanofiber membranes for durable seawater desalination [J]. Nano Research, 2023, 16(1): 489⁃495. |
17 | XU W, HU X, ZHUANG S, et al. Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination [J]. Advanced Energy Materials, 2018, 8(14): 1702884. |
18 | DONG X, LI H, GAO L, et al. Janus fibrous mats based suspended type evaporator for salt resistant solar desalination and salt recovery [J]. Small, 2022, 18(13): 2107156. |
19 | LI S, QIU F, XIA Y, et al. Integrating a self⁃floating Janus TPC@CB sponge for efficient solar⁃driven interfacial water evaporation [J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19 409⁃19 418. |
20 | REN Y, LIAN R, LIU Z, et al. CNT/polyimide fiber⁃based 3D photothermal aerogel for high⁃efficiency and long⁃lasting seawater desalination [J]. Desalination, 2022, 535: 115836. |
21 | LI H, WEN H, LI J, et al. Doping AIE photothermal molecule into all⁃fiber aerogel with self⁃pumping water function for efficiency solar steam generation [J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26 033⁃26 040. |
22 | 徐炜超. Janus吸收体在太阳能海水淡化方面的研究 [D]. 江苏省: 南京大学, 2018. |
23 | MU P, BAI W, FAN Y, et al. Conductive hollow kapok fiber⁃PPy monolithic aerogels with excellent mechanical robustness for efficient solar steam generation [J]. Journal of Materials Chemistry A, 2019, 7(16): 9 673⁃9 679. |
24 | 丁彬. 功能微纳米聚合物纤维材料 [J]. 高分子学报, 2019, 50(8): 764⁃774. |
DING B. Functional polymeric micro/nano⁃fibrous materials [J]. Acta Polymerica Sinica, 2019, 50(8): 764⁃774. | |
25 | 党箐, 张豪, 周子权, 等. 基于气凝胶的界面太阳能光蒸汽转化技术的研究进展 [J]. 功能材料与器件学报, 2022, 28(3): 212⁃231. |
DANG J, ZHANG H, ZHOU Z Q, et al. Research progress of aerogels for interfacial solar⁃vapor conversion technology [J]. Journal of Functional Materials and Devices, 2022, 28(3): 212⁃231. | |
26 | 汤勇, 于佳栋, 余树东, 等. 界面太阳能蒸汽发生系统的研究进展与展望 [J]. 机械工程学报, 2022, 58(6): 221⁃241. |
TANG Y, YU J, YU S, et al. Research progress and prospect on interfacial solar vapor generation system [J]. Journal of Mechanical Engineering, 2022, 58(6): 221⁃241. | |
27 | LIU G, XU J, WANG K. Solar water evaporation by black photothermal sheets [J]. Nano Energy, 2017, 41: 269⁃284. |
28 | CHEN C, KUANG Y, HU L. Challenges and opportunities for solar evaporation [J]. Joule, 2019, 3(3): 683⁃718. |
29 | FAN X, LV B, XU Y, et al. Electrospun reduced graphene oxide/polyacrylonitrile membrane for high⁃performance solar evaporation [J]. Solar Energy, 2020, 209: 325⁃333. |
30 | ZHU B, KOU H, LIU Z, et al. Flexible and washable CNT⁃embedded PAN nonwoven fabrics for solar⁃enabled evaporation and desalination of seawater [J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35 005⁃35 014. |
31 | QI Q, WANG W, WANG Y, et al. Robust light⁃driven interfacial water evaporator by electrospinning SiO2/MWCNTs⁃COOH/PAN photothermal fiber membrane [J]. Separation and Purification Technology, 2020, 239: 116595. |
32 | GAO T, LI Y, CHEN C, et al. Architecting a floatable, durable, and scalable steam generator: hydrophobic/hydrophilic bifunctional structure for solar evaporation enhancement [J]. Small Methods, 2019, 3(2): 1800176. |
33 | DING Q, GUAN C, LI H, et al. Solar⁃driven interfacial evaporation based on double⁃layer polylactic acid fibrous membranes loading Chinese ink nanoparticles [J]. Solar Energy, 2020, 195: 636⁃643. |
34 | YAN J, SU Q, XIAO W, et al. A review of nanofiber membranes for solar interface evaporation [J]. Desalination, 2022, 531: 115686. |
35 | YE H, LI X, DENG L, et al. Silver nanoparticle⁃enabled photothermal nanofibrous membrane for light⁃driven membrane distillation [J]. Industrial & Engineering Chemistry Research, 2019, 58(8): 3 269⁃3 281. |
36 | LI L, WANG J, JIAO B, et al. Broadband absorption of electrospun scaffold⁃assisted self⁃assembled metal nanostructures for solar⁃powered water evaporation [J]. Organic Electronics, 2023, 114: 106727. |
37 | HIGASHI S, MATSUI T, BENIYA A. Rapid solar heating of antimicrobial Ag and Cu2O nanostructured plasmonic textile for clean water production [J]. ACS Applied Materials & Interfaces, 2022, 14(35): 40 214⁃40 222. |
38 | CHEN G, JIANG Z, LI A, et al. Structural and compositional modulation of porous carbon for high⁃performance photothermal water evaporation [J]. ACS Sustainable Chemistry & Engineering, 2022, 10(12): 4 013⁃4 021. |
39 | LI H N, YANG H C, ZHU C Y, et al. A self⁃descaling Janus nanofibrous evaporator enabled by a “moving interface” for durable solar⁃driven desalination of hypersaline water [J]. Journal of Materials Chemistry A, 2022, 10(39): 20 856⁃20 865. |
40 | NASEEM S, WU C⁃M, CHALA T F. Photothermal⁃responsive tungsten bronze/recycled cellulose triacetate porous fiber membranes for efficient light⁃driven interfacial water evaporation [J]. Solar Energy, 2019, 194: 391⁃399. |
41 | CHALA T F, WU C M, CHOU M H, et al. Melt electrospun reduced tungsten oxide/polylactic acid fiber membranes as a photothermal material for light⁃driven interfacial water evaporation [J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28 955⁃28 962. |
42 | YE M, JIA J, WU Z, et al. Synthesis of black TiO x nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation [J]. Advanced Energy Materials, 2017, 7(4): 1601811. |
43 | LIU Z, ZHOU Z, WU N, et al. Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt⁃free desalination [J]. ACS Nano, 2021, 15(8): 13 007⁃13 018. |
44 | YIN X, ZHANG Y, XU X, et al. Bilayer fiber membrane electrospun from MOF derived Co3S4 and PAN for solar steam generation induced sea water desalination [J]. Journal of Solid State Chemistry, 2021, 303: 122423. |
[1] | CHENG En, YE Donglei, CHENG Debao, TIAN Huafeng, ZHAO Xiaoying, XIANG Aimin. Gelatin⁃based electrospun nanofibers and their applications [J]. China Plastics, 2024, 38(4): 103-108. |
[2] | TAN Jing, WANG Zhi, WANG Shuo, FU Hongyan, LI Changjin, LI Haoyi, YANG Weimin, ZHANG Yang. Study on toughening modification of poly(lactic acid) melt differential electrospun fiber membrane by dendrimer [J]. China Plastics, 2024, 38(2): 7-13. |
[3] | LI Jie, LU Yiyi, SHI Wentian, GUO Yunjie, WANG Yuke. Preparation and oil⁃water separation performance of PDMS/PVDF electrospun membranes [J]. China Plastics, 2024, 38(1): 28-34. |
[4] | WANG Yuwei, XIAO Runxiang, ZHANG Hongkai, GUAN Wenjin, DENG Yafeng. Research progress in nanofiber⁃based air filtration materials [J]. China Plastics, 2023, 37(9): 115-124. |
[5] | GUAN Guotao, LIU Chenze, HE Shiquan, SONG Chaoyang, ZHANG Xiang, ZHAO Na, WANG Chao. Preparation and properties of antibacterial biodegradable poly (lactic acid) membrane [J]. China Plastics, 2023, 37(9): 8-13. |
[6] | WANG Rongrong, JIANG Tao, SUN Shaoyang, ZHOU Zhou, WANG Xiang, SHEN Ying, XING Jian. Preparation and performance of electrospun polyimide/multi⁃wall carbon nanotubes hybrid nanofibers [J]. China Plastics, 2023, 37(12): 23-28. |
[7] | LI Haoyi, WANG Yiming, DING Xi, ZHANG Yi, BAI Jingyu, LI Feifei, ZHANG Yueyong, YANG Weimin. Research progress in electrospinning drug loading and its applications [J]. China Plastics, 2023, 37(12): 60-69. |
[8] | . Preparation and performance of electrospun polyimide/multi-wall carbon nanotubes hybrid nanofibers [J]. , 2023, 37(12): 23-28. |
[9] | DU Qing, HE Yi, YU Tanjing, LAN Yanjiao, ZHAO Yanzhi, ZHOU Juying. Preparation and characterization of oriented thermoplastic polyolefin/PAN/ MWCNT composites [J]. China Plastics, 2022, 36(8): 49-55. |
[10] | ZHOU Shuyi, ZHU Min, LIU Yiying, CAO Shuhui, CAI Qixuan, NIE Hui, ZHANG Yuxia, ZHOU Hongfu. Research progress in polymer⁃based hemostatic materials [J]. China Plastics, 2022, 36(7): 74-84. |
[11] | HE Xuetao, ZHANG Yi, MO Zhenyu, LI Changjin, WANG Shuo, YANG Weimin, LI Haoyi. Preparation process of PBAT fiber membrane by melt differential electrospinning [J]. China Plastics, 2022, 36(12): 1-5. |
[12] | LI Juan, WANG Yaqiao. Effect of polytetrafluoroethylene fibrillation on the foaming behavior of TPEE/PTFE composites [J]. China Plastics, 2022, 36(12): 38-43. |
[13] | ZHANG Kehong, CHU Chengxiang, LIU Xiaolong. Preparation and properties of epoxy resin/cellulose nanofiber composites [J]. China Plastics, 2022, 36(11): 67-72. |
[14] | ZHANG Xiang, WU Xian′an, LI Changjin, DU Changbiao, LI Haoyi, JIAO Zhiwei, YANG Weimin, ZHANG Yang. Research progress in preparation and applications of polymer nanofibers based on micro⁃nano lamination technology [J]. China Plastics, 2022, 36(10): 159-166. |
[15] | AN Ying, LIU Yuliang, TAN Jing, YANG Weiming, YAN Hua, LI Haoyi. Research progress in polymer centrifugal electrospinning [J]. China Plastics, 2022, 36(1): 172-177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||