京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2024, Vol. 38 ›› Issue (12): 8-18.DOI: 10.19491/j.issn.1001-9278.2024.12.002
• Materials and Properties • Previous Articles Next Articles
WEI Ce1(), CHEN Tianyu1, ZHANG Xiutao1, ZHANG Yiyao1, ZHANG Sibo1, ZHANG Xiaoyu1, HUANG Jing1,2(
), DONG Weifu1
Received:
2024-07-01
Online:
2024-12-26
Published:
2024-12-25
CLC Number:
WEI Ce, CHEN Tianyu, ZHANG Xiutao, ZHANG Yiyao, ZHANG Sibo, ZHANG Xiaoyu, HUANG Jing, DONG Weifu. Applications and future prospects dynamic covalent cross⁃linking networks in thermoplastic polymers, A review[J]. China Plastics, 2024, 38(12): 8-18.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2024.12.002
样品编号 | Tg/℃ | Tc/℃ | ΔHc/J·g-1 | Tm/℃ | ΔHm/J·g-1 | σ/MPa | ε/% | E/MPa | Gf/% |
---|---|---|---|---|---|---|---|---|---|
PET | 80.5 | 205.6 | 38.6 | 252.2 | 39.5 | 56.0±0.8 | 618±47 | 891.00±38.62 | 0 |
PET⁃0.1 | 81.5 | 197.4 | 38.1 | 251.3 | 38.9 | 54.3±1.4 | 753±96 | 809.52±81.09 | 0 |
PET⁃0.3 | 81.8 | 183.7 | 36.0 | 249.4 | 37.2 | 56.3±1.0 | 703±65 | 868.31±51.08 | 0 |
PET⁃0.5 | 82.1 | 184.9 | 31.8 | 248.8 | 33.2 | 62.3±1.1 | 338±40 | 1095.41±29.02 | 2.52 |
PET⁃0.7 | 82.7 | 185.8 | 34.9 | 248.5 | 35.9 | 64.5±2.6 | 6±1 | 1240.94±110.42 | 66.18 |
PET⁃1.0 | 83.0 | 185.2 | 36.0 | 248.0 | 37.5 | 63.4±2.5 | 6±1 | 1241.22±58.41 | 68.91 |
PET⁃1.2 | 83.3 | 179.4 | 33.7 | 247.0 | 34.0 | 59.9±1.2 | 5±1 | 1262.24±135.88 | 76.29 |
PET⁃1.5 | 84.4 | 178.4 | 32.2 | 245.1 | 33.0 | 50.9±2.3 | 4±1 | 1239.73±162.03 | 71.35 |
PET⁃2.0 | 85.3 | 175.6 | 29.6 | 244.9 | 30.5 | 43.6±7.0 | 2±1 | 1273.22±396.00 | 69.54 |
样品编号 | Tg/℃ | Tc/℃ | ΔHc/J·g-1 | Tm/℃ | ΔHm/J·g-1 | σ/MPa | ε/% | E/MPa | Gf/% |
---|---|---|---|---|---|---|---|---|---|
PET | 80.5 | 205.6 | 38.6 | 252.2 | 39.5 | 56.0±0.8 | 618±47 | 891.00±38.62 | 0 |
PET⁃0.1 | 81.5 | 197.4 | 38.1 | 251.3 | 38.9 | 54.3±1.4 | 753±96 | 809.52±81.09 | 0 |
PET⁃0.3 | 81.8 | 183.7 | 36.0 | 249.4 | 37.2 | 56.3±1.0 | 703±65 | 868.31±51.08 | 0 |
PET⁃0.5 | 82.1 | 184.9 | 31.8 | 248.8 | 33.2 | 62.3±1.1 | 338±40 | 1095.41±29.02 | 2.52 |
PET⁃0.7 | 82.7 | 185.8 | 34.9 | 248.5 | 35.9 | 64.5±2.6 | 6±1 | 1240.94±110.42 | 66.18 |
PET⁃1.0 | 83.0 | 185.2 | 36.0 | 248.0 | 37.5 | 63.4±2.5 | 6±1 | 1241.22±58.41 | 68.91 |
PET⁃1.2 | 83.3 | 179.4 | 33.7 | 247.0 | 34.0 | 59.9±1.2 | 5±1 | 1262.24±135.88 | 76.29 |
PET⁃1.5 | 84.4 | 178.4 | 32.2 | 245.1 | 33.0 | 50.9±2.3 | 4±1 | 1239.73±162.03 | 71.35 |
PET⁃2.0 | 85.3 | 175.6 | 29.6 | 244.9 | 30.5 | 43.6±7.0 | 2±1 | 1273.22±396.00 | 69.54 |
1 | Zheng N, Xu Y, Zhao Q, et al. Dynamic covalent polymer networks: A molecular platform for designing functions beyond chemical recycling and self⁃healing[J]. Chemical Reviews, 2021, 121 (3): 1 716⁃1 745. |
2 | Guerre M, Taplan C, Winne J M, et al. Vitrimers: Directing chemical reactivity to control material properties[J]. Chemical Science, 2020, 11 (19): 4 855⁃4 870. |
3 | Kloxin C J, Scott T F, Adzima B J, et al. Covalent adaptable networks (CANs): A unique paradigm in crosslinked polymers[J]. Macromolecules, 2010, 43 (6): 2 643⁃2 653. |
4 | Denissen W, Winne J M, Du Prez F E. Vitrimers: Permanent organic networks with glass⁃like fluidity[J]. Chemical Science, 2016, 7 (1): 30⁃38. |
5 | Ji F, Zhou Y M, Yang Y M. Tailoring the structure and properties of epoxy⁃polyurea vitrimers via controllable network reconfiguration [J]. Journal of Materials Chemistry A, 2021, 9 (11): 7 172⁃7 179. |
6 | Fortman D J, Brutman J P, De Hoe G X, et al. Approaches to sustainable and continually recyclable cross⁃linked polymers[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (9): 11 145⁃11 159. |
7 | Montarnal D, Capelot M, Tournilhac F, et al. Silica⁃like malleable materials from permanent organic networks[J]. Science, 2011, 334 (6058): 965⁃968. |
8 | Zhang X. Reconfigurable, easy repairable and low⁃temperature resistant dynamic 3D polymer structures[J]. Acta Polymerica Sinica, 2016 (6): 685⁃687. |
9 | Zheng N, Xu Y, Zhao Q,et al. Dynamic covalent polymer networks: A molecular platform for designing functions beyond chemical recycling and self⁃healing[J]. Chemical Reviews, 2021, 121 (3): 1 716⁃1 745. |
10 | Zhang Z P, Rong M Z, Zhang M Q. Polymer engineering based on reversible covalent chemistry: A promising innovative pathway towards new materials and new functionalities[J]. Progress in Polymer Science, 2018, 80: 39⁃93. |
11 | Zheng J, Png Z M, Ng S H, et al. Vitrimers: Current research trends and their emerging applications[J]. Materials Today, 2021, 51: 586⁃625. |
12 | Zhu G Q, Zhang J S, Huang J, et al. High⁃performance 3D printing uv⁃curable resins derived from soybean oil and gallic acid[J]. Green Chemistry, 2021, 23 (16): 5 911⁃5 923. |
13 | Zhang Y J, Lin Z C, Li X P, et al. One⁃step and scalable synthesis of eaa⁃based reprocessable vitrimer with superior mechanical properties[J]. Journal of Polymers and the Environment, 2024, 32 (3): 1 080⁃1 089. |
14 | Kloxin C J, Bowman C N. Covalent adaptable networks: Smart, reconfigurable and responsive network systems[J]. Chemical Society Reviews, 2013, 42 (17): 7 161⁃7 173. |
15 | Elling B R, Dichtel W R. Reprocessable cross⁃linked polymer networks: Are associative exchange mechanisms desirable[J]. ACS Central Science, 2020, 6 (9): 1 488⁃1 496. |
16 | Chakma P, Morley C N, Sparks J L, et al. Exploring how vitrimer⁃like properties can be achieved from dissociative exchange in anilinium salts[J]. Macromolecules, 2020, 53 (4): 1 233⁃1 244. |
17 | Denissen W, Rivero G, Nicolaÿ R, et al. Vinylogous urethane vitrimers[J]. Advanced Functional Materials, 2015, 25 (16): 2 451⁃2 457. |
18 | 李涛. 聚乙烯化工材料的结构特点以及应用发展研究[J]. 建材与装饰, 2019 (14): 62⁃63. |
LI T. Study on Structural Characteristics and Application Development of Polyethylene Chemical Materials [J]. Building Materials and Decoration, 2019 (14): 62⁃63. | |
19 | 秦丽婷. 聚乙烯的结构特点以及应用发展探析[J]. 化工设计通讯, 2022, 48 (10): 52⁃54. |
QIN L T. Structural Characteristics and Application Development of Polyethylene [J]. Chemical Engineering Design Communications, 2022, 48 (10): 52⁃54. | |
20 | Kanerva M, Puolakka A, Takala T M, et al. Antibacterial polymer fibres by rosin compounding and melt⁃spinning[J]. Materials Today Communications, 2019, 20: 100 527⁃100 536. |
21 | Weingart N, Raps D, Lu M F, et al. Comparison of the foamability of linear and long⁃chain branched polypropylene⁃the legend of strain⁃hardening as a requirement for good foamability[J]. Polymers, 2020, 12 (3): 725⁃746. |
22 | Wang S, Ma S, Qiu J, et al. Upcycling of post⁃consumer polyolefin plastics to covalent adaptable networks via in situ continuous extrusion cross⁃linking[J]. Green Chemistry, 2021, 23 (8): 2 931⁃2 937. |
23 | Röttger M, Domenech T, van der Weegen R, et al. High⁃performance vitrimers from commodity thermoplastics through dioxaborolane metathesis[J]. Science, 2017, 356 (6333): 62⁃65. |
24 | Caffy F, Nicolaÿ R. Transformation of polyethylene into a vitrimer by nitroxide radical coupling of a bis⁃dioxaborolane[J]. Polymer Chemistry, 2019, 10 (23): 3 107⁃3 115. |
25 | Maaz M, Riba⁃Bremerch A, Guibert C, et al. Synthesis of polyethylene vitrimers in a single step: Consequences of graft structure, reactive extrusion conditions, and processing aids[J]. Macromolecules, 2021, 54 (5): 2 213⁃2 225. |
26 | Montoya⁃Ospina M C, Verhoogt H, Osswald T A. Processing and rheological behavior of cross⁃linked polyethylene containing disulfide bonds[J]. SPE Polymers, 2021, 3 (1): 25⁃40. |
27 | Zych A, Pinalli R, Soliman M, et al. Polyethylene vitrimers via silyl ether exchange reaction[J]. Polymer, 2020, 199: 122 567⁃122 573. |
28 | Wang S, Ma S Q, Qiu J F, et al. Upcycling of post⁃consumer polyolefin plastics to covalent adaptable networks via in sit continuous extrusion cross⁃linking[J]. Green Chemistry, 2021, 23 (8): 2 931⁃2 937. |
29 | Wang Z, Gu Y, Ma M, et al. Strengthening polyethylene thermoplastics through a dynamic covalent networking additive based on alkylboron chemistry[J]. Macromolecules, 2021, 54 (4): 1 760⁃1 766. |
30 | Saed M O, Lin X, Terentjev E M. Dynamic semicrystalline networks of polypropylene with thiol⁃anhydride exchangeable crosslinks[J]. ACS Applied Materials & Interfaces, 2021, 13(35): 42 044⁃42 051. |
31 | Kar G P, Saed M O, Terentjev E M. Scalable upcycling of thermoplastic polyolefins into vitrimers through transesterification[J]. Journal of Materials Chemistry A, 2020, 8 (45): 24 137⁃24 147. |
32 | Kar G P, Lin X Y, Terentjev E M. Fused filament fabrication of a dynamically crosslinked network derived from commodity thermoplastics[J]. ACS Applied Polymer Materials, 2022, 4 (6): 4 364⁃4 372. |
33 | Gao Y C, Niu H. Polypropylene⁃based transesterification covalent adaptable networks with internal catalysis[J]. Polymer Chemistry, 2024, 15 (9): 884⁃895. |
34 | Wang S, Wang B, Zhang X, et al. Fully recyclable and reprocessable polystyrene⁃based vitrimers with improved thermal stability and mechanical properties through nitrogen⁃coordinating cyclic boronic ester bonds[J]. Applied Surface Science, 2021, 570: 151 157⁃151 167. |
35 | Gad M M, Rahoma A, Al⁃Thobity A M, et al. Influence of incorporation of ZrO2 nanoparticles on the repair strength of polymethyl methacrylate denture bases[J]. International Journal of Nanomedicine, 2016, 11: 5 633⁃5 643. |
36 | Leao R D, Maior J R S, Lemos C A D, et al. Complications with PMMA compared with other materials used in cranioplasty: A systematic review and meta⁃analysis[J]. Brazilian Oral Research, 2018, 32 (e31): 1⁃12. |
37 | Leao R S, Moraes S L D, Gomes J M L, et al. Influence of addition of zirconia on pmma: A systematic review[J]. Journal of Materials Science and Engineering C, 2020, 106: 110 292⁃110 230. |
38 | Xie S, Wang D, Zhang S, et al. High performance poly(methyl methacrylate) via hindered urea bond crosslinking[J]. Journal of Materials Chemistry A, 2022, 10 (17): 9 457⁃9 467. |
39 | Lessard J J, Garcia L F, Easterling C P, et al. Catalyst⁃free vitrimers from vinyl polymers[J]. Macromolecules, 2019, 52 (5): 2 105⁃2 111. |
40 | Pan P, Liang Z, Zhu B, et al. Blending effects on polymorphic crystallization of poly(l⁃lactide)[J]. Macromolecules, 2009, 42: 3 374⁃3 380. |
41 | Rieckmann T, Völker S. Poly(ethylene terephthalate) polymerization⁃mechanism, catalysis, kinetics, mass transfer and reactor design[M]. John Wiley & Sons, Ltd, 2004: 29⁃115. |
42 | Zhang W, Zhang H D, Yang Y L, et al. Network homogeneity on linear and nonlinear viscoelasticity of polyethylene terephthalate vitrimers[J]. Polymer, 2024, 300: 127 015⁃127 025. |
43 | Qiu J F, Ma S Q, Wang S, et al. Upcycling of polyethylene terephthalate to continuously reprocessable vitrimers through reactive extrusion[J]. Macromolecules, 2021, 54(2): 703⁃712. |
44 | Wu S S, Li Y D, Hu Z, et al. Fast upcycling of poly(ethylene terephthalate) into catalyst⁃free vitrimers[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(5): 1 974⁃1 984. |
45 | Li P, Lan B, Zhang X, et al. Facile in situ construction of a covalent adaptable network polyester vitrimer with advanced performance in repairability, foamability and recyclability[J]. Green Chemistry, 2022, 24(14): 5 490⁃5 501. |
46 | Vyavahare S A, Kharat B M, More A P. Polybutylene terephthalate (PBT) blends and composites: A review[J]. Vietnam Journal of Chemistry, 2024, 1⁃11. |
47 | Zhou Y, Goossens J G P, Sijbesma R P, et al. Poly(butylene terephthalate)/glycerol⁃based vitrimers via solid⁃state polymerization[J]. Macromolecules, 2017, 50 (17): 6 742⁃6 751. |
48 | Demongeot A, Groote R, Goossens H, et al. Cross⁃linking of poly(butylene terephthalate) by reactive extrusion using Zn(II) epoxy⁃vitrimer chemistry[J]. Macromolecules, 2017, 50 (16): 6 117⁃6 127. |
49 | Brutman J P, Delgado P A, Hillmyer M A. Polylactide vitrimers[J]. ACS Macro Letters, 2014, 3 (7): 607⁃610. |
50 | Borska K, Bednarek M, Pawlak A. Reprocessable polylactide⁃based networks containing urethane and disulfide linkages[J]. European Polymer Journal, 2021, 156: 110 636⁃110 645. |
51 | Liu Y B, Peng L M, Bao R Y, et al. Vitrimeric polylactide by two⁃step alcoholysis and transesterification during reactive processing for enhanced melt strength[J]. ACS Applied Materials & Interfaces, 2022, 14(40): 45 966⁃45 977. |
52 | Liu Y B, Xu Z, Zhang Z M, et al. Blowing tough polylactide film enabled by the in situ construction of covalent adaptive networks with epoxidized soybean oil as dynamic crosslinks[J]. Green Chemistry, 2023, 25(13): 5 182⁃5 194. |
53 | Zhou X W, Huang J, Zhang X H, et al. Design of tough, yet strong, heat⁃resistant pla/pbat blends with reconfigurable shape memory behavior by engineering exchangeable covalent crosslinks[J]. Chinese Journal of Polymer Science, 2023, 41(12): 1 868⁃1 878. |
54 | Xie J, Gu K, Zhao Y, et al. Enhancement of the mechanical properties of poly(lactic acid)/epoxidized soybean oil blends by the addition of 3⁃aminophenylboronic acid[J]. ACS Omega, 2022, 7( 21): 17 841⁃17 848. |
55 | Fourati Y, Tarrés Q, Mutjé P, Boufi S. PBAT/thermoplastic starch blends: Effect of compatibilizers on the rheological, mechanical and morphological properties[J]. Carbohydrate Polymers, 2018, 199: 51⁃57. |
56 | Gigante V, Canesi I, Cinelli P, et al. Rubber toughening of polylactic acid (PLA) with poly(butylene adipate⁃co⁃terephthalate) (PBAT): Mechanical properties, fracture mechanics and analysis of ductile⁃to⁃brittle behavior while varying temperature and test speed[J]. European Polymer Journal, 2019, 115: 125⁃137. |
57 | Mofokeng T G, Ojijo V, Ray S S. The influence of blend ratio on the morphology, mechanical, thermal, and rheological properties of PP/LDPE blends[J]. Macromolecular Materials and Engineering, 2016, 301(10): 1 191⁃1 201. |
58 | Oromiehie A R, Lari T T, Rabiee A. Physical and thermal mechanical properties of corn starch/ldpe composites[J]. Journal of Applied Polymer Science, 2013, 127(2): 1 128⁃1 134. |
59 | Zheng J, Lu J, Yang Z, et al. Fabrication of recyclable and biodegradable pbat vitrimer via construction of highly dynamic cross⁃linked network[J]. Polymer Degradation and Stability, 2024, 219: 110 602⁃110 614. |
60 | Fan Z Y, Shi Z, Ma L, et al. Dynamic cross⁃linked poly(butylene adipate⁃co⁃terephthalate) for high⁃performance green foam[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(45): 16 354⁃16 364. |
[1] | QU Daopeng, ZHANG Tao, HUA Chenxi, SONG Xinyu, CHENG Changli, LIU Yu, WANG Zhenyu. 3D printing of epoxy⁃based composites with high strength and electromagnetic interference shielding ability [J]. China Plastics, 2024, 38(9): 24-29. |
[2] | HU Yongxiang, XIE Jiling, LI Weiming, ZHANG Lu, TANG Xianggang, LYU Yitong, SHEN Hongwang, JU Guannan. Effect of maleic anhydride graft⁃modified ground tire rubber on properties of poly(lactic acid) [J]. China Plastics, 2024, 38(7): 20-24. |
[3] | WANG Jie, XIN Dehua, LI Hui, JIANG Hongshi, ZHOU Hongfu, ZHAO Jianguo. Effect of hybrid reinforcement of nanoclay and silica on properties of poly(lactic acid) [J]. China Plastics, 2024, 38(7): 43-48. |
[4] | XU Chen, LUO Bofei, LIU Tengteng, XING Jingkai. Research progress in modification of polypropylene with nucleating agent [J]. China Plastics, 2024, 38(7): 79-85. |
[5] | LIU Ying, SUN Hao, YANG Yong, JIANG Kaiyu, YU Tongmin, MA Sai, ZHU Tieli. Effect of ultrasonic vibration on mechanical properties of injection⁃molded parts of glass⁃fiber⁃reinforced polyamide 6 [J]. China Plastics, 2024, 38(7): 9-14. |
[6] | YANG Lian, JIANG Jing, JIA Caiyi, XIE Yuehan, WANG Xiaofeng, LI Qian. Preparation of polyamide 6 microfiber reinforced polypropylene composite and its property of chemical foam injection molding [J]. China Plastics, 2024, 38(6): 12-18. |
[7] | ZHOU Ziyi, WANG Yangyang, SUN Tao, JIANG Wei, DONG Tungalag, YUN Xunyan. Properties and applications of poly(butylene adipate⁃co⁃terephthalate)⁃based self⁃regulating gas film [J]. China Plastics, 2024, 38(6): 31-38. |
[8] | DONG Yapeng, ZHAO Tianjiao, WANG Meizhen, CUI Wenju, LIN Fuhua, WANG Bo. Effect of long chain fatty acid sodium/sodium arylamide fatty acid compounding nucleating agent on properties of polypropylene [J]. China Plastics, 2024, 38(6): 60-65. |
[9] | WANG Han, LIANG Jinhua, GAO Zhenguo, JIANG Wei, ZHOU Hao. Mechanical properties and repair efficiency of self⁃repairing microencapsulated epoxy resin [J]. China Plastics, 2024, 38(5): 40-46. |
[10] | ZHANG Zhiqi, WANG Xiangdong, LIU Haiming, CHEN Shihong. Study on toughening modification and foaming behavior of biobased polyamide 56/polyamide 66 blends by polyamide elastomer [J]. China Plastics, 2024, 38(5): 55-60. |
[11] | BO Haiwa, ZHAO Zhongguo, WANG Chouxuan, XUE Rong. Structural design and properties of PLA/CNTs conductive composites with high conductivity and low percolation [J]. China Plastics, 2024, 38(4): 13-18. |
[12] | ZHOU Ziyu, SANG Xiaoming, DI Xu, XIAO Xiaohong, HUANG Xiaoxiang, CHEN Xinggang. Effect of short⁃cut p⁃aramid fibers on mechanical properties of polyacrylonitrile resin [J]. China Plastics, 2024, 38(3): 13-17. |
[13] | CHEN Chisheng, YANG Shuai, ZHANG Jianjun, GUO Qitai, CAI Yuan, MA Sude. Effect of titanium tailings on mechanical properties of polypropylene materials [J]. China Plastics, 2024, 38(3): 26-30. |
[14] | GUO Jiang, XU Mengyi, LI Hui, HUANG Xiang, LIN Hao, JIANG Shengbao, CHEN Shang, CHEN Cheng. Preparation and dielectric properties of polypropylene/ZrO2 composite materials [J]. China Plastics, 2024, 38(3): 44-48. |
[15] | ZHAO Chuantao, JIA Zhixin, LIU Lijun, LI Jiqiang, ZHANG Chenchen, RONG Di, GAO Lizhen, WANG Shaofeng. Analysis of influence factors on mechanical properties of epoxy/carbon fiber composite⁃molded products [J]. China Plastics, 2024, 38(2): 26-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||