
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (2): 89-95.DOI: 10.19491/j.issn.1001-9278.2022.02.014
收稿日期:
2021-07-19
出版日期:
2022-02-26
发布日期:
2022-02-23
作者简介:
金清平(1975—),教授,从事FRP土木工程结构与性能研究,jinqingping@wust.edu.cn
基金资助:
JIN Qingping(), YI Jianming, GAO Yonghong, CAO Nannan, DENG Siyuan
Received:
2021-07-19
Online:
2022-02-26
Published:
2022-02-23
摘要:
采用碱性溶液静止浸泡和干湿循环两种方法对玻璃纤维增强塑料筋(GFRP)进行了不同时长的作用后,对筋体的力学性能进行表征,探究了其力学性能的退化规律,利用GFRP耐久性寿命预测公式,拟合得到了直径20 mm的GFRP力学性能的退化模型,并使用该模型预测了GFRP长期拉伸性能的变化趋势。结果表明,随着碱液对GFRP作用时间的延长,GFRP的拉伸强度显著降低,试验期间拉伸强度的退化主要集中在前90 d;直径20 mm 的GFRP的初期拉伸强度退化较直径为25 mm的 GFRP快,但经过一段时间后退化反而更慢,应力?应变关系变化规律与之一致;筋体的长期耐碱性能具有尺寸效应,与碱溶液的作用方式有关。
中图分类号:
金清平, 易建明, 高永红, 曹南南, 邓思远. 自然环境温度下碱对玻璃纤维增强塑料筋力学性能的影响研究[J]. 中国塑料, 2022, 36(2): 89-95.
JIN Qingping, YI Jianming, GAO Yonghong, CAO Nannan, DENG Siyuan. Effect on mechanical properties of glass⁃fiber⁃reinforcement polymer bars exposure to alkaline solution under natural ambient temperature[J]. China Plastics, 2022, 36(2): 89-95.
筋体 直径/mm | 腐蚀 时间/d | 拉伸 强度/MPa | 弹性模量/GPa | 拉伸强度 保留率/% | 弹性 模量比/% |
---|---|---|---|---|---|
20 | 0 | 694.7 | 46.0 | 100 | 100 |
30 | 630.4 | 52.8 | 90.8 | 114.8 | |
90 | 572.7 | 42.0 | 82.4 | 91.3 | |
150 | 533.7 | 43.59 | 76.8 | 94.7 | |
180 | 555.8 | 43.2 | 76.8 | 93.9 | |
25 | 0 | 716.2 | 45.4 | 82.4 | 91.3 |
30 | 691.5 | 50.4 | 84.8 | 85.9 | |
90 | 602.3 | 39.0 | 76.8 | 93.9 | |
180 | 555.8 | 40.4 | 77.5 | 89.0 |
筋体 直径/mm | 腐蚀 时间/d | 拉伸 强度/MPa | 弹性模量/GPa | 拉伸强度 保留率/% | 弹性 模量比/% |
---|---|---|---|---|---|
20 | 0 | 694.7 | 46.0 | 100 | 100 |
30 | 630.4 | 52.8 | 90.8 | 114.8 | |
90 | 572.7 | 42.0 | 82.4 | 91.3 | |
150 | 533.7 | 43.59 | 76.8 | 94.7 | |
180 | 555.8 | 43.2 | 76.8 | 93.9 | |
25 | 0 | 716.2 | 45.4 | 82.4 | 91.3 |
30 | 691.5 | 50.4 | 84.8 | 85.9 | |
90 | 602.3 | 39.0 | 76.8 | 93.9 | |
180 | 555.8 | 40.4 | 77.5 | 89.0 |
浸泡时间/d | 拉伸强度/MPa | 拉伸强度保留率/% |
---|---|---|
0 | 694.7 | 100.0 |
30 | 636.8 | 91.7 |
90 | 549.6 | 79.1 |
150 | 498.0 | 71.7 |
180 | 497.9 | 71.7 |
浸泡时间/d | 拉伸强度/MPa | 拉伸强度保留率/% |
---|---|---|
0 | 694.7 | 100.0 |
30 | 636.8 | 91.7 |
90 | 549.6 | 79.1 |
150 | 498.0 | 71.7 |
180 | 497.9 | 71.7 |
1 | ACI Committee . Guide for the design and construction of structural concrete reinforced with FRP bars: ACI 440.1R⁃2015 [S]. Farmington Hills: American Concrete Institute, 2015. |
2 | AHMAD SAWPAN M . Effects of alkaline conditioning and temperature on the properties of glass fiber polymer composite rebar[J]. Polymer Composites, 2016,37(11):3 181⁃3 190. |
3 | YAN F , LIN Z . Bond durability assessment and long⁃term degradation prediction for GFRP bars to fiber⁃reinforced concrete under saline solutions[J]. Composite Structures, 2017,161:393⁃406. |
4 | ESCÓRCIO P , FRANÇA P M . Experimental study of a rehabilitation solution that uses GFRP bars to replace the steel bars of reinforced concrete beams[J]. Engineering Structures, 2016,128:166⁃183. |
5 | NANNI A , DE LUCA A , ZADEH H J . Reinforced concrete with FRP bars: mechanics and design[M]. Boca Raton: CRC Press, 2014:35⁃50. |
6 | JIANG T , TENG J G . Analysis⁃oriented stress⁃strain mo⁃dels for FRP⁃confined concrete[J]. Engineering Structures, 2007,29(11):2 968⁃2 986. |
7 | YOUNIS A , EBEAD U , JUDD S . Life cycle cost analysis of structural concrete using seawater, recycled concrete aggregate, and GFRP reinforcement[J]. Construction and Building Materials, 2018,175:152⁃160. |
8 | LI Z , XIAO T , PAN Q , et al . Corrosion behaviour and mechanism of basalt fibres in acidic and alkaline environments[J]. Corrosion Science, 2016,110:15⁃22. |
9 | UOMOTO T , MUTSUYOSHI H , KATSUKI F , et al . Use of fiber reinforced polymer composites as reinforcing material for concrete[J]. Journal of Materials in Civil Engineering, 2002,14(3):191⁃209. |
10 | EL⁃HASSAN H , EL⁃MAADDAWY T , AL⁃SALLAMIN A , et al . Durability of glass fiber⁃reinforced polymer bars conditioned in moist seawater⁃contaminated concrete under sustained load[J]. Construction and Building Materials, 2018,175:1⁃13. |
11 | JIA J , BOOTHBY T E , BAKIS C E , et al . Durability evaluation of glass fiber reinforced⁃polymer⁃concrete bon⁃ded interfaces[J]. Journal of Composites for Construction, 2005,9(4):348⁃359. |
12 | GUO F , AL⁃SAADI S , RAMAN R S , et al . Durability of fiber reinforced polymer (FRP) in simulated seawater sea sand concrete (SWSSC) environment[J]. Corrosion Science, 2018,141:1⁃13. |
13 | FERGANI H , DI BENEDETTI M , OLLER C M , et al . Durability and degradation mechanisms of GFRP reinforcement subjected to severe environments and sustained stress[J]. Construction and Building Materials, 2018,170:637⁃648. |
14 | D'ANTINO T , PISANI M A . Influence of sustained stress on the durability of glass FRP reinforcing bars[J]. Construction and Building Materials, 2018,187:474⁃486. |
15 | NKURUNZIZA G , BENMOKRANE B , DEBAIKY A S , et al . Effect of sustained load and environment on long⁃term tensile properties of glass fiber⁃reinforced polymer reinforcing bars[J]. ACI Structural Journal, 2005,102(4):615⁃621. |
16 | YAN F , LIN Z , ZHANG D , et al . Experimental study on bond durability of glass fiber reinforced polymer bars in concrete exposed to harsh environmental agents: freeze⁃thaw cycles and alkaline⁃saline solution[J]. Composites Part B: Engineering, 2017,116:406⁃421. |
17 | ACI Committee . Guide test methods for fiber⁃reinforced polymers (FRPs) for reinforcing or strengthening concrete structures: ACI 440.3R⁃12 [S]. Farmington Hills: Ame⁃rican Concrete Institute, 2012. |
18 | 中国国家标准化管理委员会 . 拉挤玻璃纤维增强塑料杆力学性能试验方法: [S]. 北京:中国标准出版社,2008. |
19 | 李趁趁, 于爱民, 王英来 . 模拟混凝土碱性环境下FRP筋的耐久性[J]. 建筑科学, 2013,29(1):47⁃51. |
LI C C , YU A M , WANG Y L . Durability of FRP rebars in alkaline environment of concrete[J]. Building Science, 2013,29(1):47⁃51. | |
20 | 刘小艳, 王毅, 王新瑞, 等 . GFRP在海洋环境下的耐久性研究[J]. 玻璃钢/复合材料, 2015(3):78⁃82. |
LIU X Y , WANG Y , WANG X R ,et al .Experimental study on the durability of gfrp bars under marine environment[J].Fiber Reinforced Plastics/Composites, 2015(3):78⁃82. | |
21 | HAMMAMI A , AL⁃GHUILANI N . Durability and environmental degradation of glass⁃vinylester composites[J]. Polymer Composites, 2004,25(6):609⁃616. |
22 | 葛敦世 . 玻璃纤维碱侵蚀机理和耐碱性的探讨[J]. 玻璃纤维, 2007(1):1⁃9. |
GE D S . Discussion on alkali erosion mechanism and alkali resistance of glass fibers[J]. Fiber Glass, 2007(1):1⁃9. | |
23 | 葛敦世 . 玻璃纤维碱侵蚀反应的动力学探讨[J]. 玻璃纤维, 2005(5):4⁃9. |
GE D S . Exploration on dynamics of alkali erosion reaction in glass fibers[J]. Fiber Glass, 2005(5):4⁃9. | |
24 | 王伟, 薛伟辰 . 碱环境下GFRP拉伸性能加速老化试验研究[J]. 建筑材料学报, 2012,15(6):760⁃766. |
WANG W , XUE W C . Accelerated aging tests for evaluations of tensile properties of GFRP rebars exposed to alkaline solution[J]. Journal of Building Materials, 2012,15(6):760⁃766. | |
25 | CHEN Y , DAVALOS J F , RAY I . Durability prediction for GFRP reinforcing bars using short⁃term data of accelera⁃ted aging tests[J]. Journal of Composites for Construction, 2006,10(4):279⁃286. |
26 | Canadian standards association . Design and construction of building components with fibre⁃reinforced polymers: S806⁃17 [S]. Mississauga:Canadian Standards Association, 2017. |
27 | KATSUKI F , UOMOTO T . Prediction of deterioration of FRP rods due to alkali attack[C]//Non⁃Metallic (FRP) Reinforcement for Concrete Structures: Procee⁃dings of the Second International RILEM Symposium. Boca Raton: CRC Press, 1995: 82. |
[1] | 于昌永, 辛忠. 基于六氢邻苯二甲酸盐的α/β复合成核剂对聚丙烯性能的影响[J]. 中国塑料, 2022, 36(7): 121-128. |
[2] | 谭立钦, 刘伟区, 梁利岩, 王硕, 冯志强, 林家明. 含巯基聚硅氧烷改性环氧树脂的制备及性能[J]. 中国塑料, 2022, 36(7): 21-29. |
[3] | 徐杰, 钟进福, 童晓茜, 李广富, 付栋梁, 李城城. 端羧基修饰单宁酸/没食子酸环氧树脂复合材料的制备与性能研究[J]. 中国塑料, 2022, 36(7): 44-50. |
[4] | 李凯泽, 辛勇. 改性碳纳米管增强热塑性聚氨酯复合材料的性能研究[J]. 中国塑料, 2022, 36(6): 1-5. |
[5] | 王帅, 张玉迪, 杨富凯, 徐新宇. 聚酰亚胺/多壁碳纳米管泡沫材料的制备及性能研究[J]. 中国塑料, 2022, 36(6): 39-45. |
[6] | 王金业, 唐博虎, 杨立宁, 谢猛, 郭泽朝, 杨光. PA12试件多射流熔融成型工艺研究[J]. 中国塑料, 2022, 36(6): 81-86. |
[7] | 孙文博, 信春玲, 何亚东, 翟玉娇, 闫宝瑞. 玻璃纤维增强PBT微发泡工艺对其制品泡孔结构的影响[J]. 中国塑料, 2022, 36(5): 1-7. |
[8] | 王轲, 龙春光. PE⁃UHMW/海泡石纤维复合材料的力学性能与摩擦学性能研究[J]. 中国塑料, 2022, 36(5): 19-23. |
[9] | 陈胜, 梁颖超, 吴方娟, 方辉, 范新凤, 陈晖, 王永刚. 聚酰胺6/双向经编玻璃纤维复合材料的制备及其界面改性研究[J]. 中国塑料, 2022, 36(5): 24-28. |
[10] | 何和智, 徐力, 杨以科. 预应力对PC/CF层合板力学性能的影响[J]. 中国塑料, 2022, 36(4): 1-5. |
[11] | 李素圆, 刘会鹏, 龚舜, 黄国桃, 李玉才, 吴鑫, 邓建平, 潘凯. 热塑性聚酰胺弹性体改性EVA复合发泡材料的制备及性能表征[J]. 中国塑料, 2022, 36(4): 6-14. |
[12] | 张九夫, 罗开强, 徐军, 郭宝华. 长玻璃纤维增强PA66复合材料的综合性能及其影响因素研究[J]. 中国塑料, 2022, 36(3): 1-8. |
[13] | 王富玉, 郭金强, 张玉霞. 聚合物原位成纤方法及其在PP共混体系中的应用[J]. 中国塑料, 2022, 36(3): 146-156. |
[14] | 李泽洋, 岑兰, 陈胜, 陈伟杰, 杜兵华, 张二帅. 羧基丁腈橡胶/PA12热塑性弹性体的制备及性能研究[J]. 中国塑料, 2022, 36(3): 15-20. |
[15] | 刘浪, 栾道成, 胡志华, 文科林, 周新宇, 米书恒, 王正云. 玄武岩纤维和钢纤维含量对树脂基摩擦材料性能的影响研究[J]. 中国塑料, 2022, 36(3): 33-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||