
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2021, Vol. 35 ›› Issue (12): 145-153.DOI: 10.19491/j.issn.1001-9278.2021.12.023
收稿日期:
2021-06-15
出版日期:
2021-12-26
发布日期:
2021-12-22
YANG Xiaolong, LI Yongqing, YAN Xiaokun, CHEN Wenjing, MA Xiuqing()
Received:
2021-06-15
Online:
2021-12-26
Published:
2021-12-22
Contact:
MA Xiuqing
E-mail:maxq@mail.buct.edu.cn
摘要:
介绍了气体小分子渗透理论和气体阻隔模型,综述了聚合物/石墨烯阻气型复合材料的制备方法和气体阻隔性能的表征手段,分析并总结了影响聚合物/石墨烯复合材料气体阻隔性能的主要因素及相应的改进措施,最后对未来研究的方向进行了展望。
中图分类号:
杨小龙, 李永青, 闫晓堃, 陈文静, 马秀清. 聚合物/石墨烯阻气型复合材料的研究进展[J]. 中国塑料, 2021, 35(12): 145-153.
YANG Xiaolong, LI Yongqing, YAN Xiaokun, CHEN Wenjing, MA Xiuqing. Research progress in gas barrier polymer/graphene composites[J]. China Plastics, 2021, 35(12): 145-153.
理论模型 | 适用条件 | 计算公式 |
---|---|---|
Nielsen[ | 平行且规则分布的纳米片层 | |
Bharadwaj[ | 片层与扩散方向呈角度排列 | |
Nazarenko[ | 片层团聚的影响 | |
Cussler[ | 平行且规则分布的纳米片层 | |
Lape?Cussler[ | 平衡片层呈随机空间排布 | |
Brydges[ | 平衡片层呈随机空间排布 |
理论模型 | 适用条件 | 计算公式 |
---|---|---|
Nielsen[ | 平行且规则分布的纳米片层 | |
Bharadwaj[ | 片层与扩散方向呈角度排列 | |
Nazarenko[ | 片层团聚的影响 | |
Cussler[ | 平行且规则分布的纳米片层 | |
Lape?Cussler[ | 平衡片层呈随机空间排布 | |
Brydges[ | 平衡片层呈随机空间排布 |
样品名称 | 温度/ ℃ | 氧气渗透系数/ cm3·mm·m-2·atm-1·d-1 | 透氧性下降 百分比/% |
---|---|---|---|
纯PLA | 25 | 23 | — |
35 | 33 | — | |
45 | 51 | — | |
PLA/GR?0.1 | 25 | 18 | 22 |
35 | 22 | 33 | |
45 | 31 | 40 | |
PLA/GR?0.3 | 25 | 20 | 13 |
35 | 23 | 30 | |
45 | 35 | 32 | |
PLA/GR?0.5 | 25 | 22 | 4 |
35 | 30 | 9 | |
45 | 40 | 14 |
样品名称 | 温度/ ℃ | 氧气渗透系数/ cm3·mm·m-2·atm-1·d-1 | 透氧性下降 百分比/% |
---|---|---|---|
纯PLA | 25 | 23 | — |
35 | 33 | — | |
45 | 51 | — | |
PLA/GR?0.1 | 25 | 18 | 22 |
35 | 22 | 33 | |
45 | 31 | 40 | |
PLA/GR?0.3 | 25 | 20 | 13 |
35 | 23 | 30 | |
45 | 35 | 32 | |
PLA/GR?0.5 | 25 | 22 | 4 |
35 | 30 | 9 | |
45 | 40 | 14 |
1 | 狄莹莹, 任鹏刚, 谭温珍. 纳米片层填充型高阻隔性复合薄膜研究进展[J]. 合成纤维工业, 2018, 41(6): 59⁃63. |
DI Y Y, REN P G, TAN W Z. Research progress in nano⁃sheet filled high⁃barrier composite film[J]. China Synthetic Fiber Industry, 2018, 41(6): 59⁃63. | |
2 | LIM J, YEO H, KIM S G, et al. Pyridine⁃functionalized graphene/polyimide nanocomposites; mechanical, gas ba⁃rrier, and catalytic effects[J]. Composites, Part B:Engineering, 2017, 114B(Apr.): 280⁃288. |
3 | 刘海霞, 韩建军, 林立丰. 石墨烯制备与性能研究[J]. 河南化工, 2020, 37(5): 22⁃24. |
LIU H X, HAN J J, LIN L F. Study on preparation and properties of graphene[J]. Henan Chemical Industry, 2020, 37(5): 22⁃24. | |
4 | STANKOVICH S, DIKIN D A, DOMMETT G H B, et al. Graphene⁃based composite materials[J]. Nature, 2006, 442(7100): 282⁃286. |
5 | GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6: 183⁃191. |
6 | 邓智鹏, 郝雅鸣, 陈丹青, 等. 石墨烯在塑料改性领域中的应用[J]. 工程塑料应用, 2019, 47(12): 139⁃144. |
DENG Z P, HAO Y M, CHEN D Q, et al. Application of graphene in the field of plastics modification[J]. Engineering Plastics Application, 2019, 47(12): 139⁃144. | |
7 | 谢超杰, 王克俭. 包装中阻隔机理及新技术[J]. 塑料包装, 2018, 28(2): 8⁃11. |
XIE C J, WANG K J. Barrier mechanisms and novel technologies in packaging[J]. Plastic Packaging, 2018, 28(2): 8⁃11. | |
8 | CUI Y B, KUNDALWAL S I, KUMAR S. Gas barrier performance of graphene/polymer nanocomposites[J].Carbon: An international journal sponsored by the american carbon society, 2016, 98: 313⁃333. |
9 | BARRER R M. Thermodynamics of interlamellar complexes Part 1.&Mdash; Hydrocarbons in methylammonium montmorillonites[J]. Transactions of the Faraday Society, 1961, 57(1): 452⁃462. |
10 | NIELSEN L E. Models for the permeability of filled polymer systems[J]. Journal of Macromolecular Science⁃Chemistry, 1967, 1(5): 929⁃942. |
11 | BHARADWAJ R K. Modeling the barrier properties of polymer⁃layered silicate nanocomposites[J]. Macromolecules, 2001, 34(26): 9 189⁃9 192. |
12 | NAZARENKO S, MENEGHETTI P, JULMON P, et al. Gas barrier of polystyrene montmorillonite clay nanocomposites: effect of mineral layer aggregation[J]. Journal of Polymer Science Part B Polymer Physics, 2010, 45(13): 1 733⁃1 753. |
13 | CUSSLER E L, HUGHES S E, Iii W j W, et al. Barrier membranes[J]. Journal of Membrane Science, 1988, 38(2): 161⁃174. |
14 | LAPE N K, NUXOLL E E, CUSSLER E L. Polydisperse flakes in barrier films[J]. Journal of Membrane Science, 2004, 236(1/2): 29⁃37. |
15 | BRYDGES, DAVID C. Chapter four symanzik, nelson, and self⁃avoiding walk: diffusion, quantum theory, and radically elementary mathematics[J]. Journal of the Ameri⁃can Chemical Society, 2006, 133(39): 15 762⁃15 772. |
16 | 何 勤. 氧化石墨烯/溴化丁基橡胶复合材料的制备及性能研究[D]. 西南科技大学, 2018. |
17 | HUI J, REN P G, SUN Z F, et al. Influences of interfacial adhesion on gas barrier property of functionalized graphene oxide/ultra⁃high⁃molecular⁃weight polyethylene composites with segregated structure[J]. Composite Interfaces, 2017, 24(8): 729⁃741. |
18 | GILL Y Q, JIN J, SONG M. Comparative Study of carbon⁃based nanofillers for improving the properties of HDPE for potential applications in food tray packaging[J]. Polymers & Polymer Composites, 2020, 28(8⁃9): 562⁃571. |
19 | HONAKER K, VAUTARD F, DRZAL L T. Investiga⁃ting the mechanical and barrier properties to oxygen and fuel of high density polyethylene⁃graphene nanoplatelet compo⁃sites[J]. Materials Science & Engineering B, Solid⁃State Materials for Advanced Technology, 2017, 216: 23⁃30. |
20 | JANI P, TUUKKA V, HELENA R, et al. Matrix morphology and the particle dispersion in HDPE nanocomposites with enhanced wear resistance[J]. Polymer Testing, 2019, 77: 105897. |
21 | 张佳佳, 张晓朦, 李 姜, 等. 聚丙烯/蒙脱土和聚丙烯/石墨烯交替多层材料的结构与气体阻隔性能[J]. 高分子材料科学与工程, 2017, 33(9): 35⁃38. |
ZHANG J J, ZHANG X M, LI J, et al. Structure and gas barrier properties of polypropylene/montmorillonite and polypropylene/graphene alternating multilayered composites[J]. Polymer Materials Science & Engineering, 2017, 33(9): 35⁃38. | |
22 | REN P G, WANG H, HUANG H D, et al. Characte⁃rization and performance of dodecyl amine functionalized graphene oxide and dodecyl amine functionalized graphene/high⁃density polyethylene nanocomposites: a comparative study[J]. Journal of Applied Polymer Science, 2014, 131(2): 803⁃812. |
23 | PARK W B, BANDYOPADHYAY P, NGUYEN T N, et al. Effect of high molecular weight polyethyleneimine functionalized graphene oxide coated polyethylene terephthalate film on the hydrogen gas barrier properties[J]. Composites, Part B: Engineering, 2016, 106B: 316⁃323. |
24 | VALAPA R B, PUGAZHENTHI G, KATIYAR V. Effect of graphene content on the properties of poly(lactic acid) nanocomposites[J]. RSC Advances, 2015, 5(36): 28 410⁃28 423. |
25 | HUANG H D, REN P G, CHEN J, et al. High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films[J]. Journal of Membrane Science, 2012, 409(4): 156⁃163. |
26 | HUANG, H D, REN P G, XU J Z, et al. Improved barrier properties of poly(lactic acid) with randomly dispersed graphene oxide nanosheets[J]. Journal of Membrane Science, 2014, 464: 110⁃118. |
27 | SHIM S H, KIM K T, LEE J U. Facile method to functionalize graphene oxide and its application to poly(ethylene terephthalate)/graphene composite[J]. ACS Applied Materials & Interfaces, 2012, 4(8): 4 184⁃4 191. |
28 | 雷 瑟. 功能化氧化石墨烯/PE纳米复合膜的制备和性能研究[D]. 陕西: 西安理工大学, 2014. |
29 | CASTALDO R, LAMA G C, APREA P, et al. Effect of the oxidation degree on self⁃assembly, adsorption and barrier properties of nano⁃graphene[J]. Microporous and Mesoporous Materials: The Offical Journal of the International Zeolite Association, 2018, 260: 102⁃115. |
30 | LIU H Y, BANDYOPADHYAY P, KSHETRI T, et al. Layer⁃by⁃layer assembled polyelectrolyte⁃decorated graphene multilayer film for hydrogen gas barrier application[J]. Composites, Part B:Engineering, 2017, 114B: 339⁃347. |
31 | REN P G, WANG H, YAN D X, et al. Ultrahigh gas barrier poly(vinyl alcohol) nanocomposite film filled with congregated and oriented Fe3O4@GO sheets induced by magnetic⁃field[J]. Composites, Part A: Applied Science and Manufacturing, 2017, 97(A): 1⁃9. |
32 | YU Y H, LIN Y Y, LIN C H. High⁃performance polystyrene/graphene⁃based nanocomposites with excellent anti⁃corrosion properties[J]. Polymer Chemistry, 2014, 5(2): 535⁃550. |
33 | 赵丽丽. 氧化石墨烯/聚乙烯亚胺层层自组装复合薄膜的制备及氢气阻隔性能研究[D]. 山东: 中国石油大学(华东), 2015. |
34 | 李幸围, 张佳佳, 熊 英, 等. 聚丙烯/聚丙烯⁃石墨烯交替多层复合材料的结构及气体阻隔性能[J]. 高分子材料科学与工程, 2020, 36(5): 147⁃152, 160. |
LI X W, ZHANG J J, XIONG Y, et al. Structure and gas barrier properties of polypropylene/polypropylene⁃graphene alternating multilayered composites[J]. Polymer Materials Science & Engineering, 2020, 36(5): 147⁃152, 160. | |
35 | 郭彦峰, 付云岗, 王 思, 等. 阻隔性薄膜透气性能的压差法和等压法测试分析[J]. 中国塑料, 2019, 33(7): 89⁃95. |
GUO Y F, FU Y G, WANG S, et al. Analysis on gas permeability of barrier plastic films by differential⁃pressure and equal⁃pressure methods[J]. China Plastics, 2019, 33(7): 89⁃95 | |
36 | 于佳佳, 陈 欣, 贺祥珂, 等. 基于压差与等压法研究包装材料耐揉搓性及阻氧性[J]. 包装工程, 2019, 40(7): 76⁃80. |
YU J J, CHEN X, HE X K, et al. Flex resistance and oxygen permeability of packaging materials with differential⁃pressure method and equal⁃pressure method[J]. Packaging Engineering, 2019, 40(7): 76⁃80. |
[1] | 冯冰涛, 王晓珂, 张信, 孙国华, 汪殿龙, 侯连龙, 马劲松. 连续碳纤维增强热塑性复合材料制备与应用研究进展[J]. 中国塑料, 2022, 36(7): 165-173. |
[2] | 宋银宝, 杨建军, 李传敏. PDMS/SiC功能梯度复合材料性能与制造精度研究[J]. 中国塑料, 2022, 36(7): 30-36. |
[3] | 杨小龙, 陈文静, 李永青, 闫晓堃, 王修磊, 谢鹏程, 马秀清. 导电型聚合物/石墨烯复合材料的研究进展[J]. 中国塑料, 2022, 36(6): 165-173. |
[4] | 王轲, 龙春光. PE⁃UHMW/海泡石纤维复合材料的力学性能与摩擦学性能研究[J]. 中国塑料, 2022, 36(5): 19-23. |
[5] | 陈胜, 梁颖超, 吴方娟, 方辉, 范新凤, 陈晖, 王永刚. 聚酰胺6/双向经编玻璃纤维复合材料的制备及其界面改性研究[J]. 中国塑料, 2022, 36(5): 24-28. |
[6] | 李梦琪, 陈雅君. 纳米材料阻燃聚乳酸的研究进展[J]. 中国塑料, 2022, 36(4): 102-114. |
[7] | 刘文, 师文钊, 刘瑾姝, 陆少锋, 周红娟. 电致形状记忆复合材料研究进展[J]. 中国塑料, 2022, 36(4): 175-189. |
[8] | 阮芳涛, 夏成龙, 张宝根, 曹叶, 刘志, 徐珍珍, 章劲草. 芳纶包覆碳纤维增强环氧树脂的轴向压缩性能研究[J]. 中国塑料, 2022, 36(4): 19-23. |
[9] | 彭博, 肖运彬, 顾家宝, 陈梓钧, 唐雁煌, 朱刚, 徐焕翔. 聚合物/石墨烯复合材料制备与性能研究进展[J]. 中国塑料, 2022, 36(4): 190-197. |
[10] | 宋立健, 张有忱, 左夏华, 张政和, 安瑛, 杨卫民, 谭晶, 程礼盛. 自组装单分子层调控界面热输运的研究进展[J]. 中国塑料, 2022, 36(4): 60-69. |
[11] | 何毅, 赵广慧. 复合材料增强修复油气管道的研究进展[J]. 中国塑料, 2022, 36(4): 70-82. |
[12] | 刘延宽, 顾子琛, 王志平. 连续纤维增强热塑性预浸料制备工艺与发展趋势[J]. 中国塑料, 2022, 36(2): 172-181. |
[13] | 何明峰, 王珂, 王启扬, 杨肖, 郭红, 胡泊洋, 李保安. 聚偏氟乙烯/类基体基团修饰石墨烯导热复合材料研究[J]. 中国塑料, 2022, 36(2): 41-48. |
[14] | 李琪微, 王翠翠, 郑海军, 陈季荷, 王戈, 程海涛. 挤出循环对聚丙烯/竹粉复合材料力学及发泡性能的影响[J]. 中国塑料, 2022, 36(2): 56-60. |
[15] | 李波, 龚军, 金学义, 孟晓宇. 碳纳米管改性方法对聚酰胺11性能影响研究[J]. 中国塑料, 2022, 36(2): 61-66. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||