
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2021, Vol. 35 ›› Issue (12): 137-144.DOI: 10.19491/j.issn.1001-9278.2021.12.022
刘少帅1, 冉启迪2(), 黄建文1, 李金隆2, 张诗琪1, 朱楷2, 龚新超1, 曹堃1(
)
收稿日期:
2021-05-07
出版日期:
2021-12-26
发布日期:
2021-12-22
基金资助:
LIU Shaoshuai1, RAN Qidi2(), HUANG Jianwen1, LI Jinlong2, ZHANG Shiqi1, ZHU Kai2, GONG Xinchao1, CAO Kun1(
)
Received:
2021-05-07
Online:
2021-12-26
Published:
2021-12-22
Contact:
RAN Qidi,CAO Kun
E-mail:ranqd24@163.com;kcao@che.zju.edu.cn;ranqd24@163.com
摘要:
综述了聚对苯二甲酸乙二醇酯(PET)的改性方法及其发泡工艺的研究进展,其中改性方法主要包括固相缩聚、原位共聚和扩链改性,发泡工艺主要有釜压法、模压法、挤出法等。最后,简要介绍了我国PET发泡材料的工业化现状,并指出未来研究和发展的方向。
中图分类号:
刘少帅, 冉启迪, 黄建文, 李金隆, 张诗琪, 朱楷, 龚新超, 曹堃. 聚对苯二甲酸乙二醇酯的改性及其发泡材料的最新进展[J]. 中国塑料, 2021, 35(12): 137-144.
LIU Shaoshuai, RAN Qidi, HUANG Jianwen, LI Jinlong, ZHANG Shiqi, ZHU Kai, GONG Xinchao, CAO Kun. Progress in modification of polyethylene terephthalate and its foaming materials[J]. China Plastics, 2021, 35(12): 137-144.
1 | JIN F L, ZHAO M, PARK M, et al. Recent trends of foaming in polymer processing: A review[J]. Polymers, 2019, 11(6): 953⁃953. |
2 | YAO S, HU D, XI Z, et al. Effect of crystallization on tensile mechanical properties of PET foam: Experiment and model prediction[J]. Polymer Testing, 2020, 90: 106649. |
3 | GE Y, YAO S, XU M, et al. Improvement of poly(ethylene terephthalate) melt⁃foamability by long⁃chain branching with the combination of pyromellitic dianhydride and trigly⁃cidyl isocyanurate[J]. Industrial and Engineering Chemistry Research, 2019, 58(9): 3 666⁃3 678. |
4 | BETHKE C, GOEDDERZ D, WEBER L, et al. Impro⁃ving the flame⁃retardant property of bottle⁃grade PET foam made by reactive foam extrusion[J]. Journal of Applied Polymer Science, 2020, 137(35): 49 042⁃49 057. |
5 | LI J, TANG S, WU Z, et al. Branching and cross⁃linking of poly (ethylene terephthalate) and its foaming properties[J]. Polymer Science, Series B, 2017, 59(2): 164⁃172. |
6 | YANG Z, XIN C, MUGHAL W, et al. Prediction of foamability of polyethylene terephthalate using viscous and elastic parameters[J]. Advances in Polymer Technology, 2018, 37(6): 2 344⁃2 353. |
7 | GE Y, LU J, LIU T. Analysis of bubble coalescence and determination of the bubble radius for LCB⁃PET melt foaming with a pressure balanced bubble⁃growth model[J]. AIChE Journal, 2020, 66(4): e16862. |
8 | FAN C Y, WAN C, GAO F, et al. Extrusion foaming of poly(ethylene terephthalate) with carbon dioxide based on rheology analysis[J]. Journal of Cellular Plastics, 2016, 52(3): 277⁃298. |
9 | BOCZ K, MOLNAR B, MAROSI G, et al. Preparation of low⁃density microcellular foams from recycled pet modified by solid state polymerization and chain extension[J]. Journal of Polymers and the Environment, 2019, 27(2): 343⁃351. |
10 | CHEN M H, LAI C C, CHEN H L, et al. Preparation of long⁃chain branched polyethylene terephthalates (PETs), and crystallization behaviors, thermal characteristics, and hydrolysis resistance of their biaxially stretching films[J]. Journal of Physics and Chemistry of Solids, 2019, 129: 354⁃367. |
11 | HÄRTH M, KASCHTA J, SCHUBERT D W. Shear and elongational flow properties of long⁃chain branched poly (ethylene terephthalates) and correlations to their molecular structure[J]. Macromolecules, 2014, 47(13): 4 471⁃4 478. |
12 | FORSYTHE J S, CHEAH K, NISBET D R, et al. Rheological properties of high melt strength poly (ethylene terephthalate) formed by reactive extrusion[J]. Journal of Applied Polymer Science, 2006, 100(5): 3 646⁃3 652. |
13 | JIANG C, HAN S, CHEN S, et al. The role of PTFE in⁃situ fibrillation on PET microcellular foaming[J]. Polymer, 2021, 212: 123171. |
14 | XIA T, XI Z, YI X, et al. Melt foamability of poly (ethylene terephthalate)/clay nanocomposites prepared by extrusion blending in the presence of pyromellitic dianhydride[J]. Industrial and Engineering Chemistry Research, 2015, 54(27): 6 922⁃6 931. |
15 | MOLNAR B, RONKAY F. Effect of solid⁃state polycondensation on crystalline structure and mechanical properties of recycled polyethylene⁃terephthalate[J]. Polymer Bulletin, 2019, 76(5): 2 387⁃2 398. |
16 | JI H, GAN Y, KUMI A K, et al. Kinetic study on the synergistic effect between molecular weight and phosphorus content of flame retardant copolyesters in solid⁃state polymerization[J]. Journal of Applied Polymer Science, 2020, 137(38): 49120. |
17 | BIKIARIS D, KARAVELIDIS V, KARAYANNIDIS G. A new approach to prepare poly (ethylene terephthalate)/silica nanocomposites with increased molecular weight and fully adjustable branching or crosslinking by SSP[J]. Macromolecular Rapid Communications, 2006, 27(15): 1 199⁃1 205. |
18 | 陈志兵, 何继敏. PET发泡成型研究进展[J]. 塑料科技, 2010, 38(4): 100⁃104. |
CHEN Z B, HE J M. Research progress on foaming of PET[J]. Plastics Science and Technology, 2010, 38(4): 100⁃104. | |
19 | ZHONG H, XI Z, LIU T, et al. In⁃situ polymerization⁃modification process and foaming of poly(ethylene terephthalate)[J]. Chinese Journal of Chemical Engineering, 2013, 21(12): 1 410⁃1 418. |
20 | BIKIARIS D N, KARAYANNIDIS G P. Synthesis and characterisation of branched and partially crosslinked poly(ethylene terephthalate)[J]. Polymer International, 2003, 52(7): 1 230⁃1 239. |
21 | MCKEE M G, WILKES G L, COLBY R H, et al. Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters[J]. Macromolecular, 2004, 37(5): 1 760⁃1 767. |
22 | HUDSON N, MACDONALD W A, NEILSON A, et al. Synthesis and characterization of nonlinear PETs produced via a balance of branching and end⁃capping[J]. Macromolecules, 2000, 33(25): 9 255⁃9 261. |
23 | 孙加明. PBS⁃PA6IcoT交换反应及其产物研究[D]. 杭州: 浙江大学, 2011. |
24 | 成晓燕, 马海燕. 成纤PET改性研究进展[J]. 化工新型材料, 2020, 48(6): 222⁃225. |
CHENG X Y, MA H Y. Research development on modification of PET[J]. New Chemical Materials, 2020, 48(6): 222⁃225. | |
25 | CARDI N, PO R, GIANNOTTA G, et al. Chain extension of recycled poly (ethylene terephthalate) with 2,2'⁃bis (2⁃oxazoline)[J]. Journal of Applied Polymer Science, 1993, 50(9): 1 501⁃1 509. |
26 | KARAYANNIDIS, PSALIDA. Chain extension of recycled poly (ethylene terephthalate) with 2,2'⁃(1,4⁃phenylene) bis (2⁃oxazoline)[J]. Journal of Applied Polymer Science, 2000, 77(10): 2 206⁃2 211. |
27 | ZHAO Z, WU Y, WANG K, et al. Effect of the trifunctional chain extender on intrinsic viscosity, crystallization behavior, and mechanical properties of poly (ethylene terephthalate)[J]. ACS omega, 2020, 5(30): 19 247⁃19 254. |
28 | RAFFA P, M⁃BCOLTELLI, SAVI S, et al. Chain extension and branching of poly (ethylene terephthalate)(PET) with di⁃and multifunctional epoxy or isocyanate additives: An experimental and modelling study[J]. Reactive and Functional Polymers, 2012, 72(1): 50⁃60. |
29 | INCARNATO L, SCARFATO P, MAIO L D, et al. Structure and rheology of recycled PET modified by reactive extrusion[J]. Polymer, 2000, 41(18): 6825⁃6831. |
30 | 张飞飞, 信春玲, 叶周璇, 等. 稳定剂对聚对苯二甲酸乙二醇酯扩链及黏弹性的影响[J]. 塑料工业, 2019, 47(1): 32⁃35. |
ZHANG F, XIN C, YE Z, et al. Effect of stabilizer on chain extension and viscoelasticity of polyethylene terephthalate[J]. China Plastics Industry, 2019, 47(1): 32⁃35. | |
31 | 郭亚峰, 信春玲, 杨兆平. 二苯亚甲基山梨醇对PET扩链体系发泡性能的影响[J]. 分析试验室, 2015, 34(7): 855⁃861. |
GUO Y, XIN C, YANG Z,. The effect of crystal nucleating agents sorbitol on foaming performance of extended polyethylene terephthalates [J]. Chinese Journal of Analysis Laboratory, 2015, 34(7): 855⁃861. | |
32 | JAPON S, BOOGH L, LETERRIER Y, et al. Reactive processing of poly(ethylene terephthalate) modified with multifunctional epoxy⁃based additives[J]. Polymer, 2000, 41(15): 5 809⁃5 818. |
33 | XANTHOS M, WAN C, DHAVALIKAR R, et al. Identification of rheological and structural characteristics of foamable poly(ethylene terephthalate) by reactive extrusion[J]. Polymer International, 2004, 53(8): 1 161⁃1 168. |
34 | BANERJEE R, RAY S S. Foamability and special applications of microcellular thermoplastic polymers: A review on recent advances and future direction[J]. Macromolecular Materials and Engineering, 2020, 305(10): 2000366. |
35 | ZHONG H, XI Z, LIU T, et al. Integrated process of supercritical CO2⁃assisted melt polycondensation modification and foaming of poly(ethylene terephthalate)[J]. Journal of Supercritical Fluids, 2013, 74: 70⁃79. |
36 | XIA T, XI Z H, LIU T, et al. Melt foamability of reactive extrusion⁃modified poly(ethylene terephthalate) with pyromellitic dianhydride using supercritical carbon dioxide as blowing agent[J]. Polymer Engineering and Science, 2015, 55(7): 1 528⁃1 535. |
37 | LIU H M, WANG X D, LIU W, et al. Reactive modification of poly(ethylene terephthalate) and its foaming behavior[J]. Cellular Polymers, 2014, 33(4): 189⁃212. |
38 | YANG Z P, XIN C L, MUGHAL W, et al. High⁃melt⁃elasticity poly(ethylene terephthalate) produced by reactive extrusion with a multi⁃functional epoxide for foaming[J]. Journal of Applied Polymer Science, 2018, 135(8): 45805. |
39 | JIANG C, HAN S, CHEN S, et al. Crystallization⁃induced microcellular foaming behaviors of chain⁃extended polyethylene terephthalate[J]. Cellular Polymers, 2020, 39(6): 223⁃237. |
40 | 王文博,王亚桥,余科松,等. 纳米二氧化硅/POE协同增韧聚对苯二甲酸乙二醇酯及其发泡行为研究[J]. 中国塑料, 2018, 32(5): 28⁃33. |
WANG W B, WANG Y Q, XU K S, et al. Study on synergistic effect and foaming behavior of PET toughened with nano⁃SiO2/POE[J]. China Plastics, 2018, 32(5): 28⁃33. | |
41 | GUAN R, XIANG B, XIAO Z, et al. The processing–structure relationships in thin microcellular PET sheet prepared by compression molding[J]. European Polymer Journal, 2006, 42(5): 1 022⁃1 032. |
42 | GUAN R, BANGLONG X, YINGLIN L, et al. Mechanical properties of thin microcellular PET sheet[J]. e⁃Polymers, 2007, 7(1): 1⁃13. |
43 | 鲁德平, 王必勤. 模压法微孔发泡PET薄膜的性能研究[J]. 胶体与聚合物, 2002(3): 21⁃23. |
LU D, WANG B. Study of mechanical behavior of molding microcellular PET film[J]. Chinese Journal of Colloid and Polymer, 2002(3): 21⁃23. | |
44 | MAIO L D, COCCORULLO I, MONTESANO S, et al. Chain extension and foaming of recycled PET in extrusion equipment[J]. Macromolecular Symposia, 2005, 228(1): 185⁃200. |
45 | ZHENG W, LEE P, PARK C. Extrusion foaming beha⁃viors of PET with CO2[C]// Annual Technical Conference⁃ANTEC, 2007:3020. |
46 | SORRENTINO L, DI MAIO E, IANNACE S. Poly (ethylene terephthalate) foams: correlation between the polymer properties and the foaming process[J]. Journal of Applied Polymer Science, 2010, 116(1): 27⁃35. |
47 | XANTHOS M, DEY S, ZHANG Q, et al. Parameters affecting extrusion foaming of PET by gas injection[J]. Journal of cellular plastics, 2000, 36(2): 102⁃111. |
48 | YAO S, GUO T H, LIU T, et al. Good extrusion foa⁃ming performance of long⁃chain branched PET induced by its enhanced crystallization property[J]. Journal of Applied Polymer Science, 2020, 137(41): 49 268⁃49 284. |
49 | BOCZ K, RONKAY F, MOLNáR B, et al. Recycled PET foaming: Supercritical carbon dioxide assisted extrusion with real⁃time quality monitoring[J]. Advanced Industrial and Engineering Polymer Research, 2021: https://doi.org/10.1016/j.aiepr.2021.1003.1002. |
50 | 汪 鹏, 王海珍, 刘宝锋, 等. PET泡沫的性能评估及其在风机叶片上的应用探讨[J]. 玻璃钢/复合材料, 2016(7): 60⁃62,37. |
WANG P, WANG H, LIU B, et al. The evaluation of PET foam properties and study on its application prospects in wind turbine blades[J]. Fiber Reinforced Plastics/Composites, 2016(7): 60⁃62,37. | |
51 | 治 明. 发泡PET聚酯啤酒瓶[J]. 国外塑料, 2011, 29(3): 72. |
ZHI M. Foamed PET bottles for beer[J]. World Plastics, 2011, 29(3): 72. | |
52 | KUMAR V, WAGGONER M, KROEGER L, et al. Microcellular recycled PET foams for food packaging[J]. Plast Recycl Sustain, 2007, 3: 1 106⁃1 128. |
53 | LAI C⁃C, YU C⁃T, WANG F⁃M, et al. Preparation of recycled polyethylene terephthalate composite foams and their feasible evaluation for electronic packages[J]. Polymer Testing, 2019, 74: 1⁃6. |
54 | WIRGES W, WEGENER M, VORONINA O, et al. Optimized preparation of elastically soft, highly piezoelectric, cellular ferroelectrets from nonvoided poly (ethylene terephthalate) films[J]. Advanced Functional Materials, 2007, 17(2): 324⁃329. |
55 | SANTO L, BELLISARIO D, QUADRINI F. Shape memory behavior of PET foams[J]. Polymers, 2018, 10(2): 115. |
[1] | 冯凯, 李永青, 马秀清, 韩颖. 聚甲醛增韧改性的研究进展及应用[J]. 中国塑料, 2022, 36(7): 157-164. |
[2] | 陈轲, 刘鸣飞, 赵彪, 潘凯. 有机硅改性高分子材料阻燃及耐烧蚀性能研究进展[J]. 中国塑料, 2022, 36(6): 149-154. |
[3] | 邓天翔, 许利娜, 李守海, 张燕, 姚娜, 贾普友, 丁海阳, 李梅. PVC接枝改性及交联改性方法研究进展[J]. 中国塑料, 2022, 36(5): 140-148. |
[4] | 王镕琛, 张恒, 孙焕惟, 段书霞, 秦子轩, 李晗, 朱斐超, 张一风. 医疗卫生用聚乳酸非织造材料的制备及其亲水改性研究进展[J]. 中国塑料, 2022, 36(5): 158-166. |
[5] | 赵新新, 金晓冬, 施妍, 孙诗兵, 吕锋, 田英良, 赵志永. 基于紫外⁃臭氧辐照的挤塑聚苯乙烯表面改性研究[J]. 中国塑料, 2022, 36(5): 8-13. |
[6] | 陈文静, 杨小龙, 韩顺涛, 韩颖, 马秀清. 聚丙烯腈材料改性方法及研究进展[J]. 中国塑料, 2022, 36(4): 158-165. |
[7] | 董露茜, 徐芳, 翁云宣. 聚乙醇酸改性及其应用研究进展[J]. 中国塑料, 2022, 36(4): 166-174. |
[8] | 李素圆, 刘会鹏, 龚舜, 黄国桃, 李玉才, 吴鑫, 邓建平, 潘凯. 热塑性聚酰胺弹性体改性EVA复合发泡材料的制备及性能表征[J]. 中国塑料, 2022, 36(4): 6-14. |
[9] | 宋仁达, 武高健, 陈俊翔, 张有忱, 杨卫民, 谢鹏程. 微孔发泡PP/PET/CNTs复合材料的制备及其电磁屏蔽效能研究[J]. 中国塑料, 2022, 36(2): 1-7. |
[10] | 马嘉森, 薛永兵, 郭旗, 刘振民. 废旧塑料改性剂改性沥青的研究进展[J]. 中国塑料, 2022, 36(2): 131-138. |
[11] | 仇洪波. 基于仿生学的木材超疏水表面改性研究进展[J]. 中国塑料, 2022, 36(2): 182-196. |
[12] | 李永青, 杨小龙, 陈文静, 闫晓堃, 马秀清. 改性剂及高密度聚乙烯插层和剥离蒙脱石的分子动力学模拟[J]. 中国塑料, 2022, 36(2): 67-74. |
[13] | 金福锦, 郝雨楠, 焦红文, 赵宏宇. 建筑绝热用石墨改性挤塑聚苯乙烯泡沫板的应用及标准解读[J]. 中国塑料, 2021, 35(9): 109-115. |
[14] | 孙国华, 张信, 武德珍, 侯连龙. 高性能聚酰亚胺复合材料的研究进展[J]. 中国塑料, 2021, 35(9): 147-155. |
[15] | 陆伟鑫, 陆冲, 王斌, 胡晶, 吴菁菁, 周秦鹏. 环氧改性剂对PA6/EVOH共混物性能的影响[J]. 中国塑料, 2021, 35(9): 8-14. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||