
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (3): 146-156.DOI: 10.19491/j.issn.1001-9278.2022.03.023
收稿日期:
2022-02-27
出版日期:
2022-03-26
发布日期:
2022-03-25
通讯作者:
张玉霞(1965—),女,副教授,从事高性能塑料薄膜、聚烯烃发泡材料及可生物降解塑料等领域的相关研究工作,zhangyux@th.btbu.edu.cn
WANG Fuyu, GUO Jinqiang, ZHANG Yuxia()
Received:
2022-02-27
Online:
2022-03-26
Published:
2022-03-25
Contact:
ZHANG Yuxia
E-mail:zhangyux@th.btbu.edu.cn
摘要:
介绍了聚合物共混体系原位成纤原理、影响因素、制备方法及聚丙烯(PP)与其他聚合物原位成纤共混体系研究进展,包括PP/聚酰胺(PA)、PP/聚对苯二甲酸乙二醇酯(PET)原位成纤共混体系等。重点阐述了不同共混比、相容性、黏度比和加工参数(如拉伸速率、螺杆转速、加工温度等)等对PA或PET在PP中的成纤形态和PP力学性能、结晶性能等的影响。
中图分类号:
王富玉, 郭金强, 张玉霞. 聚合物原位成纤方法及其在PP共混体系中的应用[J]. 中国塑料, 2022, 36(3): 146-156.
WANG Fuyu, GUO Jinqiang, ZHANG Yuxia. In⁃situ fibrillation methods of polymer blends and their application in PP⁃based blends[J]. China Plastics, 2022, 36(3): 146-156.
注塑温度/ ℃ | 拉伸强度/ MPa | 弯曲强度/ MPa | 简支梁冲击强度/ kJ•m-2 |
---|---|---|---|
220 | 33.81 | 34.19 | 4.70 |
280 | 31.15 | 32.55 | 4.13 |
注塑温度/ ℃ | 拉伸强度/ MPa | 弯曲强度/ MPa | 简支梁冲击强度/ kJ•m-2 |
---|---|---|---|
220 | 33.81 | 34.19 | 4.70 |
280 | 31.15 | 32.55 | 4.13 |
拉伸速率/m•min-1 | PA6微纤平均直径/μm | PA6微纤平均直径/μm |
---|---|---|
6 | 16.4 | 9.15 |
12 | 21.6 | 5.77 |
18 | 22.8 | 2.92 |
24 | 24.7 | 2.46 |
30 | 22.6 | 2.15 |
拉伸速率/m•min-1 | PA6微纤平均直径/μm | PA6微纤平均直径/μm |
---|---|---|
6 | 16.4 | 9.15 |
12 | 21.6 | 5.77 |
18 | 22.8 | 2.92 |
24 | 24.7 | 2.46 |
30 | 22.6 | 2.15 |
1 | 王国全. 聚合物共混改性原理与应用[M]. 北京:中国轻工业出版社,2007:1⁃3. |
2 | 张声莹,李姜红,赵大江,等.原位微纤复合材料的研究进展[J].广州化工,2016,44(10):5⁃8. |
ZHANG S Y, LI J H, ZHAO D J, et al. Research progress on polymer in⁃situ microfiber composites[J]. Guangzhou Chemical Industry,2016,44(10):5⁃8. | |
3 | 潘燕.原位拉伸聚合物结构与性能研究[D].重庆:重庆理工大学,2013. |
4 | KISS G. In situ composites: blends of isotropic polymers and thermotropic liquid crystalline polymers[J]. Polymer Engineering & Science,1987,27(6):410⁃423. |
5 | WEISS R A, HUH W, NICOLAIS L. Novel reinforced polymers based on blends of polystyrene and a thermotropic liquid crystalline polymer[J]. Polymer Engineering and Science,1987,27(9):684⁃691. |
6 | 练兴瀚. 原位纳纤化PLA基共混材料的制备及其性能研究[D]. 广州:华南理工大学,2020. |
7 | LI Z, SHI Y J, SUN C X,et al. In situ micro and nano fibrillar reinforced elastomer composites based on polypropylene (PP)/olefinic block copolymer (OBC)[J]. Composi⁃tes Science & Technology, 2015, 115:34⁃42. |
8 | 张婷婷 .原位微纤增强EVA复合材料的微纤形态和性能研究[D].贵阳:贵州大学,2018. |
9 | 张爽,冯钠,刘俊龙,等.原位成纤复合材料研究进展[J].橡塑与技术装备,2005,31(12):25⁃30. |
ZHANG S, FENG N, LIU J L, et al. The progress of research on the on⁃site fiber forming composite materials[J]. Chnia Rubber/Plastics Technology and Equipment,2005,31(12):25⁃30. | |
10 | LI M F, XIAO R, SUN G. Morphology development and size control of poly (trimethylene terephthalate) nanofibers prepared from poly (trimethylene terephthalate)/cellulose acetate butyrate in⁃situ fibrillar composites[J]. Journal of Materials Science, 2011,46(13):4 524⁃4 531. |
11 | 董珈豪,戚远慧,韦良强,等.分散相含量对POE/PTT原位增强复合材料性能的影响[J]. 中国塑料,2016,30(6):57⁃62. |
DONG J H, QI Y H, WEI L Q, et al. Effect of contents of dispersed phase on properties of ptt/poe in⁃situ fiber reinforced composite[J]. China Plastics, 2016,30(6):57⁃62. | |
12 | 王国全.聚合物共混改性原理与应用[M].中国轻工业出版社,2016,55⁃58. |
13 | 刘渝,黄安荣,韦良强,等.黏度比对EVA/PP原位微纤复合材料形态及性能的影响[J]. 塑料工业,2018,46(8):43⁃46. |
LIU Y, HUANG A R, WEI L Q, et al. The effect of viscosity ratio on the morphology and properties of EVA/PP in⁃situ microfibillar composites[J]. China Plastics Industry,2018,46(8)43⁃46. | |
14 | 张玲,黄锐.新型热塑性弹性体增韧PP的原位成纤[J]. 塑料,2000,29,(5):37⁃38. |
ZHANG L, HUANG R. Fibrillating of new thermoplastic elastomer toughening PP[J]. Plastics,2000,29(5):37⁃38. | |
15 | 易新,王玉领,钟淦基,等. 增容剂对PP/PET原位微纤化共混物的影响[J]. 中国塑料,2009,23(11):21⁃25. |
YI X, WANG Y L, ZHONG G J, et al. Effect of compatibilizer on in⁃situ microfibrillated polypropylene/poly(ethylene terephthalate)blend[J]. China Plastics,2009,23(11):21⁃25. | |
16 | 贾世奎,王忠,朱艳,等.原位增强PLA/PBS合金的微观形态及力学性能研究[J]. 塑料工业,2016,44(9):32⁃36. |
JIA S K, WANG Z, ZHU Y, et al. Morphology and mechanical properties of PLA/PBS alloy via in⁃situ reinforcement[J]. China Plastics Industry,2016,44(9):32⁃36. | |
17 | 赵均乐. 原位微纤化LLDPE/PET共混物的反应增容[D]. 青岛:青岛科技大学,2012. |
18 | 王占杰.原位成纤复合技术改善聚丙烯的加工行为及力学性能[D].青岛:青岛科技大学,2010. |
19 | 黄英. 三螺杆直接挤出原位成纤机理及微纤复合体系结构与性能的研究[D]. 北京:北京化工大学,2017. |
20 | 李忠明,杨鸣波,卢忠远,等.热拉伸比对PET/PE原位微纤化复合材料形态和拉伸性能的影响[J]. 复合材料学报,2005,22(3):9⁃15. |
LI Z M, YANG M B, LU Z Y, et al. Influence of hot stretch ratio on morphology and tensile properties pf poly (ethylene terephthalate) and polyethylene intu microfibrillar composite[J]. Acta Materiae Compositae Sinica, 2005,22(3):9⁃15. | |
21 | SUN J, LUO S S, HUANG A R, et al. Effect of stretching speed on morphologies and properties of in situ microfibrillar POE/PLA composites[J]. Journal of Thermoplastic Composite Materials,2020:1⁃13. |
22 | 任曙霞.PTT/PE共混及原位微纤材料的制备及性能研究[D]. 上海:东华大学,2010. |
23 | 孙永锋,王益龙,王爱平. HDPE/PA6原位微纤共混物的制备与性能[J].现代塑料加工应用,2013,25(3):5⁃8. |
SUN Y F, WANG Y L, WANG A P. Preparation and properties of HDPE/PA6 in situ micro-fibrillar blend[J]. Modern Plastic Processing and Applications, 2013,25(3):5⁃8. | |
24 | 戚远慧,董珈豪,罗筑,等.PA11含量对PA11/PP原位成纤复合材料性能的影响[J]. 现代塑料加工应用,2015,27(6):9⁃12. |
QI Y H, DONG J H, LUO Z, et al. Effects of PA11 contens on in⁃situ fiberized PA11/PP composites[J]. Modern Plastic Processing and Applications, 2015,27(6):9⁃12. | |
25 | 黄安荣,韦良强,石文建. HDPE/PA6复合材料形态及力学性能研究[J].化工新型材料,2015,43(7):147⁃150. |
HUANG A R, WEI L Q, SHI J W, et al. Study on mophology and mechanical properties of HDPE/PA6 compo⁃site[J]. New Chemical Materials,2015,43(7):147⁃150. | |
26 | 李春海,吴宏,李姜,等. 多级双向拉伸挤出系统在聚合物加工中的应用进展[J]. 高分子材料科学工程,2021,37(1):349⁃358,374. |
LI C H, WU H, LI J, et al. Recent progress of multi⁃stage biaxial stretch extrusion system in the polymer processing[J]. Polymer Materials Science and Engineering,2021,37(1):349⁃358,374. | |
27 | 申开智, 官青, 吉继亮, 等. 低压动态保压注射模塑ABS的自增强[J].工程塑料应用,1995(1):12⁃15. |
28 | 刘欢,王益龙,于雅萍,等.通过挤出机头强剪切制备LDPE/PET原位微纤复合材料[J]. 现代塑料加工应用,2018,30(1):34⁃37. |
LIU H, GUAN Q, YU Y P, et al. Preparation of LDPE/PET in⁃situ microfibril composites by high shear extrusion head[J]. Modern Plastics Processing and Applications, 2018,30(1):34⁃37. | |
29 | 刘欢,王益龙,刘冰,等. 挤出加工方法对制备PP/PET原位微纤共混物微观形态的影响[J]. 中国塑料,2018,32(2):81⁃85. |
LIU H, WANG Y L, LIU B, et al. Effect of extrusion processing methods on microfibrillar micromorphology of PP/PET blends[J]. China Plastics, 2018,32(2):81⁃85. | |
30 | SCHRENK W J, ALFREY T J, et al. Polymer blends[M]. New York: Academic,1987: 129⁃164. |
31 | 韦良强,黄安荣,秦舒浩,等.微纳层叠共挤制备HDPE/PA6原位成纤复合材料的形态及性能研究[C]//第十五届中国科协年会第17分场:复合材料与节能减排研讨会论文集.贵阳:《中国学术期刊(光盘版)》电子杂志社,2013,1⁃6. |
32 | 黄安荣,韦良强,罗筑,等.分散相含量对HDPE/PA6原位成纤增强复合材料性能的影响[J].塑料工业,2013,41(8):15⁃19. |
HUANG A R, WEI L Q, LUO Z, et al. Effect of contents of dispersed phase on properties of HDPE/PA6 in⁃situ fiber reinforced composites[J].China Plastics Industry, 2013,41(8):15⁃19. | |
33 | 黄安荣,韦良强,秦舒浩,等. 微纳叠层制备HDPE/PA6原位成纤复合材料的形态及性能[J].塑料工业,2013,41(7):27⁃30. |
HUANG A R, WEI L Q, QIN S H. Morphology and properties of HDPE/PA6 in⁃situ fiberized composites based on micro⁃nano laminated [J].China Plastics Industry, 2013,41(7):27⁃30. | |
34 | SHEN J B, WANG M, LI J, et al. In situ fibrillation of polyamide 6 in isotactic polypropylene occurring in the lami⁃nating⁃multiplying die[J]. Polymers Advanced Technologies, 2011, 22:237⁃245. |
35 | 李婷,李姜,张玉清,等. 微层共挤出(PP+EVOH)/PP阻隔材料的结构与性能研究[J]. 高分子学报,2009,12:1 226⁃1 231. |
LI T, LI J, ZHANG Y Q G, et al. Structure and properties of (PP+EVOH)/PP barrier material prepared by microlayer coextrusion[J]. Acta Polymerica Sinica, 2009,12:1 226⁃1 231. | |
36 | 孙小杰.多级拉伸PP/PA1010/CB 原位微纤复合材料结构与导电性能的研究[C]// 2010 年全国高分子材料科学与工程研讨会,南昌:2010,143⁃145. |
37 | 孙义明,谢霞,段玉情,等. MAH原位增容PP/PA6共混体系力学性能研究[J]. 湖州工业大学学报,2011,26(5):1⁃3. |
SUN Y M, XIE X, DUAN Y Q, et al. A study of mechanical properties of PP/PA6 blending system situ⁃compatibilized with MAH[J]. Journal of Hubei University of Technology,2011,26(5):1⁃3. | |
38 | 查小月,张照,彭娅,等. PP/PA6共混体系中的增容改性研究进展[J]. 塑料工业,2015,43(9):5⁃9,14. |
CHA X Y, ZHANG Z, PENG Y, et al. The research progress on compatibilizing modification of PP/PA6 blends[J]. china plastics industry,2015.43(9):5⁃9,14. | |
39 | 王玉,孙文杰,马玉录,等.增容作用对PP/PA6原位微纤复合材料形貌及性能的影响[J]. 中国塑料,2021,35(5):1⁃5. |
WANG Y, SUN W J, MA Y L, et al. Effect of compatibilizer on morphology and performance of PP/PA6 microfibrillar composites[J]. China Plastics,2021,35(5):1⁃5. | |
40 | 孙显茹,熊彦可,张昊,等.PA6原位成纤复合改善PP的力学性能[J].合成树脂及塑料,2012,29(3):57⁃60. |
SUN X R, XIONG Y K, ZHANG H,et al. Mechanical properties of polypropylene modified with polyamide 6 by in⁃situ fibrillation method[J]. China Synthetic Resin and Plastics,2012,29(3):57⁃60. | |
41 | 孙显茹,宋中心,张昊,等.PA6原位成纤改善PPR的挤出流变性能[J].现代塑料加工应用,2012,24(2):5⁃8. |
SUN X R, SONG Z X, ZHANG H, et al. Extrusion rheological properties of PPR modified with in⁃situ fibrillation composite of PA6[J]. Modern Plastics Processing and Applications, 2012,24(2):5⁃8. | |
42 | 孙显茹.PA6原位成纤复合改善PP的挤出流变性能和力学性能[D]. 青岛:青岛科技大学,2012. |
43 | 黎学冬,陈呜才,黄玉惠. 拉伸作用对PP/PA6原位成纤复合体系的影响[J]. 高分子材料科学与工程,1999,15(4):78⁃80,83. |
LI X D, CHEN W C, HUANG Y C, et al. Study of the polymer degree of polyphenyl phosphates and the flame retardancy[J]. Polymer Materials Science and Engineering,1999,15(4):78⁃80,83. | |
44 | 孙显茹,王占杰,刘祥贵,等.原位成纤复合法改善聚丙烯的力学性能[J].合成树脂及塑料,2011,28(3):58⁃61. |
SUN X R, WANG Z J, LIU G X, et al. Improvement of mechanical properties of polypropylene by in⁃situ fibrillation[J]. China Synthetic Resin and Plastics,2011,28(3):58⁃61. | |
45 | RIZVIA A, PARKA C B, FAVIS B D. Tuning viscoelastic and crystallization properties of polypropylene containing in⁃situ generated high aspect ratio polyethylene terephthalate fibrils[J]. Polymer,2015(68):83⁃91. |
46 | ZHANG A M, CHAI J L, YANG C X, et al. Fibrosis mechanism, crystallization behavior and mechanical properties of in⁃situ fibrillary PTFE reinforced PP composites[J]. Materials & Design,2021,211:110157. |
47 | 张贻舟.PP/ABS纳米微纤复合材料的制备及功能化研究[D].长沙:湘潭大学,2016. |
48 | 邢栋.聚苯硫醚(PPS)原位成纤复合材料性能研究[D].大连:大连工业大学,2010. |
49 | 戚远慧,黄安荣,朱永军,等. LLDPE/PA66原位成纤复合材料形态及性能研究[J]. 现代塑料加工应用,2014,26(6):16⁃18. |
QI Y H, HUANG A R, ZHU Y J, et al. Morphology and properties of LLDPE/PA66 in⁃situ fiberized composi⁃tes[J]. Modern Plastic Processing and Applications,2014,26(6):16⁃18. | |
50 | 罗卫,黄象安 .PE/PBT原位成纤增强复合材料的形态和力学性能研究[J].合成纤维,2010 ( 12) : 18⁃21. |
LUO W, HUANG X A. Study on morphology and mechanical properties of PE/PBT in⁃situ fiber reinforced composites [J]. Synthetic Fiber, 2010(12):18⁃21. | |
51 | LI Z M, YANG M B, HUANG R,et a1.In⁃situ composite based on poly ( ethylene terephthalate ),polyamide and polyethylene with microfibers formed through extrusion and hot stretching[J]. J Mater Sci Technol,2002,18 (5) : 419⁃423. |
52 | ZHOU SY, HUANG H D JI X,et al. Super⁃robust polylactide barrier films by building densely oriented lamellae incorporated with ductile in situ nanofibrils of poly (butylene adipate⁃co⁃terephthalate) [J]. ASC Applied Materials & Interfaces, 2016,8,8 096⁃8 109. |
53 | WANG J F, ZHANG X L, ZHAO T B, et al. Morpho⁃logies and properties of polycarbonate/polyethylene in situ microfibrillar composites prepared through multistage stretching extrusion[J]. Journal of Applied Polymer Science, 2014, 131: 2 113⁃2 124. |
54 | KELNAR I, KAPRÁLKOVÁ L, KRATOCHVÍL J, et al. Effect of layered silicates and reactive compatibilization on structure and properties of melt⁃drawn HDPE/PA6 microfibrillar composites[J]. Polymer Bulletin, 2016, 73(6): 1 673⁃1 688. |
55 | ZHOU S Y, NIU B, XIE X L, et al. Interfacial shish⁃kebabs lengthened by coupling effect of in situ flexible nanofibrils and intense shear flow: achieving hierarchy to conquer the conflicts between strength and toughness of polylactide[J]. ASC Applied Materials & Interfaces, 2017, 9, 10 148⁃10 159. |
56 | CHEN Y, SUN Z B, LI Y S, et al. Tuning wettability and mechanical property of polylactide composite films with in⁃situ nanofibrils of poly(butylene adipate⁃co⁃terephthalate[J]. Composites Communications,2020,22:100515. |
[1] | 吴唯, 胡焕波, 沈辉, 赵天瑜. 4A沸石与钙镁铝水滑石对膨胀阻燃聚丙烯的双重协效阻燃作用与机理[J]. 中国塑料, 2022, 36(7): 1-7. |
[2] | 于昌永, 辛忠. 基于六氢邻苯二甲酸盐的α/β复合成核剂对聚丙烯性能的影响[J]. 中国塑料, 2022, 36(7): 121-128. |
[3] | 谭立钦, 刘伟区, 梁利岩, 王硕, 冯志强, 林家明. 含巯基聚硅氧烷改性环氧树脂的制备及性能[J]. 中国塑料, 2022, 36(7): 21-29. |
[4] | 刘义, 孙伟, 曲国兴, 王叶, 袁宁, 杨少林, 许霞, 常小毅, 张宇飞. 薄壁注塑透明聚丙烯专用料的结构与性能分析[J]. 中国塑料, 2022, 36(7): 37-43. |
[5] | 徐杰, 钟进福, 童晓茜, 李广富, 付栋梁, 李城城. 端羧基修饰单宁酸/没食子酸环氧树脂复合材料的制备与性能研究[J]. 中国塑料, 2022, 36(7): 44-50. |
[6] | 李凯泽, 辛勇. 改性碳纳米管增强热塑性聚氨酯复合材料的性能研究[J]. 中国塑料, 2022, 36(6): 1-5. |
[7] | 王帅, 张玉迪, 杨富凯, 徐新宇. 聚酰亚胺/多壁碳纳米管泡沫材料的制备及性能研究[J]. 中国塑料, 2022, 36(6): 39-45. |
[8] | 孙伟, 刘义, 廖云龙, 陈俊佳. 聚丙烯粉料乙烯含量测定影响因素研究[J]. 中国塑料, 2022, 36(6): 54-59. |
[9] | 王金业, 唐博虎, 杨立宁, 谢猛, 郭泽朝, 杨光. PA12试件多射流熔融成型工艺研究[J]. 中国塑料, 2022, 36(6): 81-86. |
[10] | 孙文博, 信春玲, 何亚东, 翟玉娇, 闫宝瑞. 玻璃纤维增强PBT微发泡工艺对其制品泡孔结构的影响[J]. 中国塑料, 2022, 36(5): 1-7. |
[11] | 王轲, 龙春光. PE⁃UHMW/海泡石纤维复合材料的力学性能与摩擦学性能研究[J]. 中国塑料, 2022, 36(5): 19-23. |
[12] | 陈胜, 梁颖超, 吴方娟, 方辉, 范新凤, 陈晖, 王永刚. 聚酰胺6/双向经编玻璃纤维复合材料的制备及其界面改性研究[J]. 中国塑料, 2022, 36(5): 24-28. |
[13] | 何和智, 徐力, 杨以科. 预应力对PC/CF层合板力学性能的影响[J]. 中国塑料, 2022, 36(4): 1-5. |
[14] | 万翼, 李莉, 菊春燕, 郝雪纯, 李润. 乌鲁木齐市塑料垃圾年产量预测及影响因素分析[J]. 中国塑料, 2022, 36(4): 121-127. |
[15] | 陈文静, 杨小龙, 韩顺涛, 韩颖, 马秀清. 聚丙烯腈材料改性方法及研究进展[J]. 中国塑料, 2022, 36(4): 158-165. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||