
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (9): 96-104.DOI: 10.19491/j.issn.1001-9278.2022.09.014
收稿日期:
2022-05-18
出版日期:
2022-09-26
发布日期:
2022-09-26
通讯作者:
公维光(1975—),男,主要从事阻燃材料、生物降解材料领域研究工作,gongwg@ecust.edu.cn基金资助:
MENG Xin1, WANG Xiaolong1, GONG Weiguang2(), JIN Yi3
Received:
2022-05-18
Online:
2022-09-26
Published:
2022-09-26
Contact:
GONG Weiguang
E-mail:gongwg@ecust.edu.cn
摘要:
以聚磷酸铵(APP)为核,壳聚糖(CS)、氯化铁和埃洛石(HNT)为壳,以水为溶剂,通过自组装的方式制备了“三源一体”壳核型阻燃剂(APP@CS@HNT和APP@CS⁃Fe@HNT,分别简写为ACH和ACFH),并将其用于提升聚乳酸(PLA)的阻燃性能。通过扫描电子显微镜、热重分析仪等对ACH和ACFH的组成及结构进行了分析,然后对PLA的阻燃性能进行表征。结果表明,PLA/15 %ACFH(质量分数,下同)的阻燃性能优于纯PLA和PLA/15 %ACH,PLA/15 %ACFH的极限氧指数(LOI)最高,提升到29.5 %,且UL 94达到V⁃0级;相较于纯PLA,PLA/15 %ACFH的最大热释放速率(PHRR)和总热释放量(THR)分别下降了33.5 %和22.0 %,残炭量提高了12.5 %;ACFH主要发挥凝聚相阻燃效果,燃烧过程能促进PLA基体形成大量连续、致密的炭层,起到抑制氧气和热量扩散的阻隔作用。
中图分类号:
孟鑫, 王小龙, 公维光, 金谊. “三源一体”壳核型阻燃剂的制备及其在聚乳酸中的应用[J]. 中国塑料, 2022, 36(9): 96-104.
MENG Xin, WANG Xiaolong, GONG Weiguang, JIN Yi. Preparation of three⁃sources⁃in⁃one shell⁃core structural flame retardants and its application in poly(lactic acid)[J]. China Plastics, 2022, 36(9): 96-104.
样品名称 | PLA/% | ACH/% | ACFH/% |
---|---|---|---|
纯PLA | 100 | 0 | 0 |
PLA/13 %ACH | 87 | 13 | 0 |
PLA/15 %ACH | 85 | 15 | 0 |
PLA/17 %ACH | 83 | 17 | 0 |
PLA/13 %ACFH | 87 | 0 | 13 |
PLA/15 %ACFH | 85 | 0 | 15 |
PLA/17 %ACFH | 83 | 0 | 17 |
样品名称 | PLA/% | ACH/% | ACFH/% |
---|---|---|---|
纯PLA | 100 | 0 | 0 |
PLA/13 %ACH | 87 | 13 | 0 |
PLA/15 %ACH | 85 | 15 | 0 |
PLA/17 %ACH | 83 | 17 | 0 |
PLA/13 %ACFH | 87 | 0 | 13 |
PLA/15 %ACFH | 85 | 0 | 15 |
PLA/17 %ACFH | 83 | 0 | 17 |
样品名称 | T5 %/℃ | Tmax/℃ | PHRR/%•℃-1 | 残炭量/% |
---|---|---|---|---|
APP | 351.5 | 639.9 | 1.035 | 20.4 |
HNT | 455.9 | 489.4 | 0.154 | 85.9 |
CS | 277.8 | 312.3 | 0.796 | 36.0 |
ACH | 293.8 | 607.3 | 0.286 | 40.8 |
ACFH | 279.0 | 315.0 | 0.198 | 57.2 |
样品名称 | T5 %/℃ | Tmax/℃ | PHRR/%•℃-1 | 残炭量/% |
---|---|---|---|---|
APP | 351.5 | 639.9 | 1.035 | 20.4 |
HNT | 455.9 | 489.4 | 0.154 | 85.9 |
CS | 277.8 | 312.3 | 0.796 | 36.0 |
ACH | 293.8 | 607.3 | 0.286 | 40.8 |
ACFH | 279.0 | 315.0 | 0.198 | 57.2 |
样品名称 | UL 94等级 | LOI/% |
---|---|---|
纯PLA | NR | 18.1 |
PLA/13 %ACH | V⁃2 | 27.3 |
PLA/15 %ACH | V⁃2 | 28.3 |
PLA/17 %ACH | V⁃0 | 29.4 |
PLA/13 %ACFH | V⁃2 | 27.8 |
PLA/15 %ACFH | V⁃0 | 29.5 |
PLA/17 %ACFH | V⁃0 | 30.2 |
样品名称 | UL 94等级 | LOI/% |
---|---|---|
纯PLA | NR | 18.1 |
PLA/13 %ACH | V⁃2 | 27.3 |
PLA/15 %ACH | V⁃2 | 28.3 |
PLA/17 %ACH | V⁃0 | 29.4 |
PLA/13 %ACFH | V⁃2 | 27.8 |
PLA/15 %ACFH | V⁃0 | 29.5 |
PLA/17 %ACFH | V⁃0 | 30.2 |
样品名称 | TTI/s | PHRR/kW•m-2 | THR/MJ•m-2 | 残炭量/% |
---|---|---|---|---|
纯PLA | 68 | 299.9 | 102.0 | 1.4 |
PLA/15 %ACH | 44 | 211.4 | 83.6 | 11.7 |
PLA/15 %ACFH | 46 | 195.4 | 79.5 | 13.9 |
样品名称 | TTI/s | PHRR/kW•m-2 | THR/MJ•m-2 | 残炭量/% |
---|---|---|---|---|
纯PLA | 68 | 299.9 | 102.0 | 1.4 |
PLA/15 %ACH | 44 | 211.4 | 83.6 | 11.7 |
PLA/15 %ACFH | 46 | 195.4 | 79.5 | 13.9 |
样品名称 | PSPR/ m2•m-2 | TSR/ m2•m-2 | 平均CO2 释放量/ kg•kg-1 | 平均CO 释放量/ kg•kg-1 |
---|---|---|---|---|
PLA | 0.001 0 | 0.3 | 1.18 | 0.003 7 |
PLA/15 %ACH | 0.004 2 | 58.3 | 1.08 | 0.015 0 |
PLA/15 %ACFH | 0.003 1 | 9.2 | 0.96 | 0.028 2 |
样品名称 | PSPR/ m2•m-2 | TSR/ m2•m-2 | 平均CO2 释放量/ kg•kg-1 | 平均CO 释放量/ kg•kg-1 |
---|---|---|---|---|
PLA | 0.001 0 | 0.3 | 1.18 | 0.003 7 |
PLA/15 %ACH | 0.004 2 | 58.3 | 1.08 | 0.015 0 |
PLA/15 %ACFH | 0.003 1 | 9.2 | 0.96 | 0.028 2 |
样品名称 | T5 %/℃ | Tmax/℃ | Rmax/ %•min-1 | 残炭量/% | |
---|---|---|---|---|---|
理论值 | 实验值 | ||||
纯PLA | 363.1 | 402.8 | 2.80 | — | 0.7 |
PLA/15 %ACH | 342.8 | 393.6 | 1.92 | 6.1 | 11.0 |
PLA/15 %ACFH | 343.6 | 395.7 | 1.83 | 8.6 | 11.6 |
样品名称 | T5 %/℃ | Tmax/℃ | Rmax/ %•min-1 | 残炭量/% | |
---|---|---|---|---|---|
理论值 | 实验值 | ||||
纯PLA | 363.1 | 402.8 | 2.80 | — | 0.7 |
PLA/15 %ACH | 342.8 | 393.6 | 1.92 | 6.1 | 11.0 |
PLA/15 %ACFH | 343.6 | 395.7 | 1.83 | 8.6 | 11.6 |
1 | TSUJI H. Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications[J]. Macromolecular Bioscience. 2005, 5(7): 569⁃597. |
2 | MARTIN O, AVEÂROUS L. Poly (lactic acid): plasticization and properties of biodegradable multiphase systems[J]. Polymer. 2001, 42(14): 6 209⁃6 219. |
3 | NOFAR M, PARK C B. Poly (lactic acid) foaming[J]. Progress in Polymer Science, 2014, 39(10): 1 721⁃1 741. |
4 | GABRIELE P, GIAN DC, CATIA B. Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties[J]. Journal of Applied Polymer Science, 1996, 59(1): 37⁃43. |
5 | YU S, XIANG H, ZHOU J, et al. Enhanced flame⁃retardant performance of poly (lactic acid) (PLA) composite by using intrinsically phosphorus⁃containing PLA[J]. Progress in Natural Science: Materials International, 2018, 28(5): 590⁃597. |
6 | JIN X, CUI S, SUN S, et al. The preparation of a bio⁃polyelectrolytes based core⁃shell structure and its application in flame retardant polylactic acid composites[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105 485⁃105 496. |
7 | LIM LT, AURAS R, RUBINO M. Processing technologies for poly(lactic acid)[J]. Progress in Polymer Science, 2008, 33(8): 820⁃852. |
8 | GARLOTTA D. A Literature review of poly(lactic acid)[J]. Journal of Polymers and the Environment, 2001, 9(2): 63⁃84. |
9 | GANDINI A. Polymers from renewable resource: A challenge for the future of macromolecular materials[J]. Macromolecular Bioscience, 2008, 41(24): 9 492⁃9 504. |
10 | CHEN Y, WANG W, QIU Y, et al. Terminal group effects of phosphazene⁃triazine bi⁃group flame retardant additives in flame retardant polylactic acid composites[J]. Polymer Degradation and Stability, 2017, 140: 166⁃175. |
11 | WANG Y T, LIAO S F, SHANG K, et al. Efficient approach to improving the flame retardancy of poly(vinyl alcohol)/clay aerogels: incorporating piperazine⁃modified ammonium polyphosphate[J]. ACS Appl Mater Interfaces, 2015, 7(3): 1 780⁃1 786. |
12 | QIAN Y, WEI P, JIANG P, et al. Synthesis of a novel hybrid synergistic flame retardant and its application in PP/IFR[J]. Polymer Degradation and Stability, 2011, 96(6): 1 134⁃1 140. |
13 | GONG W, FAN M, LUO J, et al. Effect of nickel phytate on flame retardancy of intumescent flame retardant polylactic acid[J]. Polymers for Advanced Technologies, 2020, 32(4): 1 548⁃1 559. |
14 | JIAO C, CHEN X, ZHANG J. Synergistic effects of Fe2O3 with layered double hydroxides in EVA/LDH composites[J]. Journal of Fire Sciences, 2009, 27(5): 465⁃479. |
15 | ZHOU Y, LIU X, WANG F. Effect of metal oxides on fire resistance and char formation of intumescent flame retardant coating[J]. Journal of Inorganic Materials, 2014, 29(9): 972⁃978. |
16 | LI Z, ZHANG J, NIE S, et al. Bioinspired growth of iron derivatives on mesoporous silica: effect on thermal degradation and fire behavior of polystyrene[J]. Nanotechnology, 2019, 31(6): 1⁃13. |
17 | MA W, WU H, HIGAKI Y, et al. Halloysite nanotubes: Green nanomaterial for functional organic⁃inorganic nanohybrids[J]. The Chemical Record, 2018, 18(7): 986⁃999. |
18 | JI X, CHEN D, WANG Q, et al. Synergistic effect of flame retardants and carbon nanotubes on flame retarding and electromagnetic shielding properties of thermoplastic polyurethane[J]. Composites Science and Technology, 2018, 163: 49⁃55. |
19 | JOO Y, JEON Y, LEE SU, et al. Aggregation and stabilization of carboxylic acid functionalized halloysite nanotubes (HNT⁃COOH)[J]. The Journal of Physical Chemi⁃stry C, 2012, 116(34): 18 230⁃18 235. |
20 | ZHENG T, NI X. Loading an organophosphorous flame retardant into halloysite nanotubes for modifying UV⁃curable epoxy resin[J]. RSC Advances, 2016, 6(62): 57 122⁃57 130. |
21 | BOONKONGKAEW M, SIRISINHA K. Halloysite nanotubes loaded with liquid organophosphate for enhanced flame retardancy and mechanical properties of polyamide 6[J]. Journal of Materials Science, 2018, 53(14): 10 181⁃10 193. |
22 | YANG G, CAI J, GENG Y, et al. Cu⁃modified ZSM zeolite has synergistic flame retardance, smoke suppression, and catalytic conversion effects on pulp fiber after ammonium polyphosphate flame⁃retardant treatment[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(38): 14 365⁃14 376. |
23 | DENG C, ZHAO J, DENG C⁃L, et al. Effect of two types of iron MMTs on the flame retardation of PE⁃HD composite[J]. Polymer Degradation and Stability, 2014, 103: 1⁃10. |
24 | LI Z, LIU L, JIMéNEZ GONZáLEZ A, et al. Bioinspired polydopamine⁃induced assembly of ultrafine Fe(OH)3 nanoparticles on halloysite toward highly efficient fire retardancy of epoxy resin via an action of interfacial catalysis[J]. Polymer Chemistry, 2017, 8(26): 3 926⁃3 936. |
25 | XIONG Z, ZHANG Y, DU X, et al. Green and scalable fabrication of core⁃shell biobased flame retardants for reducing flammability of polylactic acid[J]. ACS Sustainable Chemistry & Engineering, 2019, 9(7): 8 954⁃8 963. |
26 | 诸健强, 陆馨, 辛忠. 苯基聚硅氧烷微胶囊化聚磷酸铵的制备及其在PP中阻燃性能研究[J]. 中国塑料. 2018, 32(7): 28⁃32. |
ZHU J, LU X, XIN Z. Preparation and application of microencapsulated ammonium polyphosphate with phenyl polysiloxane shell for flame retardancy of polypropylene[J]. China Plastics, 2018, 32(7): 28⁃32. | |
27 | ZHANG Y, XIONG Z, GE H, et al. Core⁃shell bioderived flame retardants based on chitosan⁃alginate coated ammonia polyphosphate for enhancing flame retardancy of polylactic acid[J]. ACS Sustainable Chemistry & Engineering, 2020, 16(8): 6 402⁃6 412. |
28 | JING J, ZHANG Y, FANG Z, et al. Core⁃shell flame retardant/graphene oxide hybrid: a self⁃assembly strategy towards reducing fire hazard and improving toughness of polylactic acid[J]. Composites Science and Technology, 2018, 165: 161⁃167. |
[1] | 陈淑花, 任子萌, 孙婷婷. 壳聚糖/壳聚糖接枝氧化石墨烯复合气凝胶的制备及性能研究[J]. 中国塑料, 2022, 36(9): 32-37. |
[2] | 宋丹阳, 郑红娟, 李一龙. 聚乳酸基油水分离材料研究进展[J]. 中国塑料, 2022, 36(9): 187-192. |
[3] | 曲玉婷, 王立梅, 齐斌. 聚乙二醇对聚乳酸/淀粉纳米晶复合材料性能的影响[J]. 中国塑料, 2022, 36(8): 56-61. |
[4] | 沈雪梅, 朱小龙, 胡燕超, 宋任远, 张现峰, 李席. 静电喷雾法制备聚乳酸/布洛芬微球及其性能研究[J]. 中国塑料, 2022, 36(7): 61-67. |
[5] | 杨笑春, 于静, 张青. 壳聚糖对PVC热稳定性能影响研究[J]. 中国塑料, 2022, 36(7): 68-73. |
[6] | 周舒毅, 朱敏, 刘忆颖, 曹舒惠, 蔡启轩, 聂慧, 张玉霞, 周洪福. 高分子止血材料研究进展[J]. 中国塑料, 2022, 36(7): 74-84. |
[7] | 邵琳颖, 郗悦玮, 翁云宣. 可降解聚乳酸复合材料研究进展[J]. 中国塑料, 2022, 36(6): 155-164. |
[8] | 王镕琛, 张恒, 孙焕惟, 段书霞, 秦子轩, 李晗, 朱斐超, 张一风. 医疗卫生用聚乳酸非织造材料的制备及其亲水改性研究进展[J]. 中国塑料, 2022, 36(5): 158-166. |
[9] | 李福杰, 齐斌, 徐华亭, 王立梅. 交联壳聚糖/聚乙烯醇/蜗牛黏液复合膜的制备及性能研究[J]. 中国塑料, 2022, 36(5): 53-61. |
[10] | 李梦琪, 陈雅君. 纳米材料阻燃聚乳酸的研究进展[J]. 中国塑料, 2022, 36(4): 102-114. |
[11] | 隋振全, 毛金超, 范金石. 壳聚糖/聚乙烯醇液态地膜的制备与应用[J]. 中国塑料, 2022, 36(3): 21-25. |
[12] | 谢玉, 王立梅, 齐斌. 交联壳聚糖/蒙脱土复合膜的制备及性能研究[J]. 中国塑料, 2022, 36(3): 58-63. |
[13] | 田保政. 烷基次膦酸盐阻燃剂复配体系的研究进展[J]. 中国塑料, 2022, 36(2): 197-208. |
[14] | 孙滔, 杨青, 胡健, 王洋样, 刘博, 云雪艳, 董同力嘎. 聚(乳酸⁃乙醇酸)薄膜制备及其性能研究[J]. 中国塑料, 2022, 36(2): 33-40. |
[15] | 张伟, 陈杰, 李陈莹, 胡丽斌, 谭笑, 曹京荥. 无卤阻燃聚烯烃电力电缆料的应用现状[J]. 中国塑料, 2022, 36(1): 184-191. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||