
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2023, Vol. 37 ›› Issue (1): 106-111.DOI: 10.19491/j.issn.1001-9278.2023.01.016
收稿日期:
2022-10-10
出版日期:
2023-01-26
发布日期:
2023-01-26
作者简介:
赵微微(1990—),女,工程师,主要从事高分子铁路制品回收再利用领域,18811353712@163.com
ZHAO Weiwei(), ZHANG Yong, LIU Zhi, ZHANG Bin, GAO Jian
Received:
2022-10-10
Online:
2023-01-26
Published:
2023-01-26
摘要:
通过采用长度为4.5 mm、直径为10 μm的玻璃纤维和马来酸酐接枝聚烯烃弹性体(POE⁃g⁃MAH)增韧剂且添加量为10 %时所制得的再生聚酰胺部件产品尺寸和性能指标满足要求,且部件具有良好的尺寸稳定性等,部件经组装疲劳性能测试后未发生损坏,各项组装性能均满足要求。结果表明,废弃聚酰胺部件经过收集、破碎、清洗、改性等工序后可成为良好的可再生资源,可继续应用于铁路市场。
中图分类号:
赵微微, 张勇, 刘志, 张彬, 高健. 铁路废弃聚酰胺部件回收再生利用[J]. 中国塑料, 2023, 37(1): 106-111.
ZHAO Weiwei, ZHANG Yong, LIU Zhi, ZHANG Bin, GAO Jian. Recycling and reutilization of railway waste polyamide gauge baffles[J]. China Plastics, 2023, 37(1): 106-111.
注塑机温度/℃ | 热喷嘴温度/℃ | 热流道板温度/℃ | 模温机温度/℃ | |||||||
---|---|---|---|---|---|---|---|---|---|---|
一段 | 二段 | 三段 | 四段 | 五段 | 一段 | 二段 | 一段 | 二段 | 三段 | |
285 | 280 | 275 | 265 | 260 | 290 | 290 | 285 | 285 | 285 | 70 |
注塑机温度/℃ | 热喷嘴温度/℃ | 热流道板温度/℃ | 模温机温度/℃ | |||||||
---|---|---|---|---|---|---|---|---|---|---|
一段 | 二段 | 三段 | 四段 | 五段 | 一段 | 二段 | 一段 | 二段 | 三段 | |
285 | 280 | 275 | 265 | 260 | 290 | 290 | 285 | 285 | 285 | 70 |
部位 | 射出速度/ % | 射出压力/ MPa | 保压速度/ % | 保压压力/ MPa | 保压时间/ s |
---|---|---|---|---|---|
一段 | 33 | 9 | 20 | 5.5 | 30 |
二段 | 35 | 8.6 | 20 | 5 | 25 |
三段 | 30 | 8.3 | — | — | — |
部位 | 射出速度/ % | 射出压力/ MPa | 保压速度/ % | 保压压力/ MPa | 保压时间/ s |
---|---|---|---|---|---|
一段 | 33 | 9 | 20 | 5.5 | 30 |
二段 | 35 | 8.6 | 20 | 5 | 25 |
三段 | 30 | 8.3 | — | — | — |
类别 | 密度/ g·cm-3 | 熔点/ ℃ | 拉伸强度/ MPa | 弯曲强度/ MPa | 无缺口冲击强度/ kJ·m-2 | 玻璃纤维含量/ % | 玻璃纤维长度/ μm | 熔体流动速率/ g·(10 min)-1 |
---|---|---|---|---|---|---|---|---|
废弃聚酰胺部件 | 1.389 | 260 | 128 | 214 | 68 | 33.37 | 190 | 6.12 |
新料 | 1.376 | 261 | 187 | 257 | 94 | 33.4 | 260 | 5.1 |
类别 | 密度/ g·cm-3 | 熔点/ ℃ | 拉伸强度/ MPa | 弯曲强度/ MPa | 无缺口冲击强度/ kJ·m-2 | 玻璃纤维含量/ % | 玻璃纤维长度/ μm | 熔体流动速率/ g·(10 min)-1 |
---|---|---|---|---|---|---|---|---|
废弃聚酰胺部件 | 1.389 | 260 | 128 | 214 | 68 | 33.37 | 190 | 6.12 |
新料 | 1.376 | 261 | 187 | 257 | 94 | 33.4 | 260 | 5.1 |
玻璃纤维长度/mm | 拉伸强度/MPa | 弯曲强度/MPa | 无缺口冲击强度/kJ·m-2 | 玻璃纤维保留长度最大值/μm | 熔体流动速率/ g·(10 min)-1 |
---|---|---|---|---|---|
3.0 | 163.2 | 201.5 | 79 | 215 | 6.87 |
4.5 | 177.1 | 224.6 | 95 | 280 | 5.92 |
长纤 | 204.8 | 247.2 | 112 | 2 455 | 3.23 |
玻璃纤维长度/mm | 拉伸强度/MPa | 弯曲强度/MPa | 无缺口冲击强度/kJ·m-2 | 玻璃纤维保留长度最大值/μm | 熔体流动速率/ g·(10 min)-1 |
---|---|---|---|---|---|
3.0 | 163.2 | 201.5 | 79 | 215 | 6.87 |
4.5 | 177.1 | 224.6 | 95 | 280 | 5.92 |
长纤 | 204.8 | 247.2 | 112 | 2 455 | 3.23 |
玻璃纤维直径/μm | 拉伸强度/MPa | 弯曲强度/MPa | 无缺口冲击强度/ kJ·m-2 | 熔体流动速率/ g·(10 min)-1 |
---|---|---|---|---|
7 | 146.4 | 221.4 | 82 | 6.02 |
10 | 189.8 | 266.9 | 96 | 5.85 |
13 | 152.7 | 205.5 | 89 | 4.33 |
玻璃纤维直径/μm | 拉伸强度/MPa | 弯曲强度/MPa | 无缺口冲击强度/ kJ·m-2 | 熔体流动速率/ g·(10 min)-1 |
---|---|---|---|---|
7 | 146.4 | 221.4 | 82 | 6.02 |
10 | 189.8 | 266.9 | 96 | 5.85 |
13 | 152.7 | 205.5 | 89 | 4.33 |
类别 | 拉伸强度/MPa | 弯曲强度/MPa | 无缺口冲击强度/ kJ·m-2 | 熔体流动速率/ g·(10 min)-1 |
---|---|---|---|---|
POE⁃g⁃MAH | 190 | 221.4 | 89 | 6.02 |
EPDM⁃g⁃MAH | 186 | 266.9 | 94 | 3.85 |
类别 | 拉伸强度/MPa | 弯曲强度/MPa | 无缺口冲击强度/ kJ·m-2 | 熔体流动速率/ g·(10 min)-1 |
---|---|---|---|---|
POE⁃g⁃MAH | 190 | 221.4 | 89 | 6.02 |
EPDM⁃g⁃MAH | 186 | 266.9 | 94 | 3.85 |
项目 | TB/T 3395.3—2015要求 | 新料制备 部件 | 再生聚酰胺 部件 | |
---|---|---|---|---|
型式 尺寸 | A/mm | 67.5±0.5 | 67.3~67.7 | 67.2~67.5 |
B/mm | 45.5±1 | 44.9~45.7 | 44.7~45.1 | |
C/mm | 78±0.3 | 77.71~78.23 | 77.74~78.16 | |
D/mm | 113 | 114 | ||
E/mm | 13.6~13.9 | 13.6~13.9 | ||
α/° | 119°43′~120°44′ | 120°~120°52′ | ||
X/mm | ≤0.5 | 合格 | 合格 | |
Y/mm | ≤0.5 | 合格 | 合格 | |
翘角/mm | ≤0.5 | 合格 | 合格 | |
排水率/% | ≥0.4 | 0.5 | 0.6 | |
内部空隙 | 内部不得有气泡或空隙 | 内部无气泡和空隙 | 内部无气泡和空隙 | |
抗压性能/mm | 试验后不应损伤,翘起值不应大于0.5 | 0.1 | 0.1 | |
绝缘电阻/Ω | >5×106 | 1×107 | 3×107 | |
组装 疲劳 性能 | 轨距扩大量/mm | ≤6 | 1 | 2 |
钢轨纵向阻力变化率/% | ≤20 | 1 | 1 | |
组装扣压力变化率/% | ≤20 | 3 | 2 | |
组装静刚度变化率/% | ≤25 | 6 | 4 | |
疲劳后零部件状态 | 部件无损坏 | 300万次荷载循环后无损坏 | 300万次荷载循环后无损坏 |
项目 | TB/T 3395.3—2015要求 | 新料制备 部件 | 再生聚酰胺 部件 | |
---|---|---|---|---|
型式 尺寸 | A/mm | 67.5±0.5 | 67.3~67.7 | 67.2~67.5 |
B/mm | 45.5±1 | 44.9~45.7 | 44.7~45.1 | |
C/mm | 78±0.3 | 77.71~78.23 | 77.74~78.16 | |
D/mm | 113 | 114 | ||
E/mm | 13.6~13.9 | 13.6~13.9 | ||
α/° | 119°43′~120°44′ | 120°~120°52′ | ||
X/mm | ≤0.5 | 合格 | 合格 | |
Y/mm | ≤0.5 | 合格 | 合格 | |
翘角/mm | ≤0.5 | 合格 | 合格 | |
排水率/% | ≥0.4 | 0.5 | 0.6 | |
内部空隙 | 内部不得有气泡或空隙 | 内部无气泡和空隙 | 内部无气泡和空隙 | |
抗压性能/mm | 试验后不应损伤,翘起值不应大于0.5 | 0.1 | 0.1 | |
绝缘电阻/Ω | >5×106 | 1×107 | 3×107 | |
组装 疲劳 性能 | 轨距扩大量/mm | ≤6 | 1 | 2 |
钢轨纵向阻力变化率/% | ≤20 | 1 | 1 | |
组装扣压力变化率/% | ≤20 | 3 | 2 | |
组装静刚度变化率/% | ≤25 | 6 | 4 | |
疲劳后零部件状态 | 部件无损坏 | 300万次荷载循环后无损坏 | 300万次荷载循环后无损坏 |
1 | 谢 毅,肖 杰. 高速铁路发展现状及趋势研究[J].高速铁路技术,2021,12(2):23⁃26. |
XIE Y, XIAO J. Research on high⁃speed railway development status and trend[J]. High Speed Railway Technology, 2021,12(2):23⁃26. | |
2 | 王镠莹,温洪宇. 铁路新技术发展趋势研究及对我国的建设[J]. 中国铁路,2020(1):59⁃64. |
WANG L Y, WEN H Y. Research on the development trend of new railway technology and suggestions to China[J]. China Railway, 2020(1):59⁃64. | |
3 | Akiyama Yoshihiro, 宋文伟. 全球高速铁路50年发展回顾与展望[J]. 国外铁道车辆, 2015,52(6):1⁃7. |
Akiyama Yoshihiro, SONG W W. Review of the 50⁃Year development of high⁃speed railway in the world and corresponding forecast[J]. Foreign Rolling Stock, 2015,52(6):1⁃7. | |
4 | 谢 毅,寇峻瑜,姜 梅,等. 中国铁路发展概况与技术展望[J]. 高速铁路技术,2020,11(1):11⁃16. |
XIE Y, KOU J Y, JIANG M, et al. Development and technical prospect of China railway[J]. High Speed Railway Technology, 2020,11(1):11⁃16. | |
5 | 盛 伟,付传锋. 高速铁路扣件系统的类型与应用[J]. 金属加工,2010(7):31⁃35. |
SHENG W, FU C F. Application of rail fasteners in high speed railway line[J]. MW Mental Forming,2010(7):31⁃35. | |
6 | 肖俊恒. 客运专线无砟轨道扣件系统技术研究[J]. 中国铁路,2009(2):44⁃47,54. |
XIAO J H. Research on the technology of ballastless track fastening system for passenger⁃dedicated line[J]. Chinese Railways,2009(2):44⁃47,54. | |
7 | 张 岷. 双块式无砟轨道桥梁梁端扣件系统力学分析[J]. 铁道工程学报, 2009,2(125):56⁃63. |
ZHANG M. Mechanics analysis of the rail fastening of bi⁃block ballastless track on the bridge terminal[J]. Journal of Railway Engineering Society, 2009,2(2):56⁃63. | |
8 | 宿国英,邓 娇,刘 刚. 超高分子量聚乙烯在小阻力扣件系统中的应用[J]. 山西建筑,2010,36(13):141⁃142. |
SU G Y, DENG J, LIU G. On application of UHMWPE in minimum resistance fastening system[J]. Shanxi Architecture, 2010,36(13):141⁃142. | |
9 | 汤友钱,汤 娇,汤 啸,等. 高速铁路绝缘轨距块用增强尼龙专用料研究[J]. 浙江科技学院学报,2012,24(3):227⁃231. |
TANG Y Q, TANG J, TANG X, et al. Research on high⁃speed rail insulated gauge blocks with reinforced nylon[J]. Journal of Zhejiang University of Science and Technology, 2012,24(3):227⁃231. | |
10 | 巫广生. 轨道交通行业发展及其对高性能改性尼龙需求分析[J]. 国外塑料,2011,29(2):46⁃48. |
WU G S. Development of rail transit industry and analysis of its demand for high⁃performance modified nylon[J]. World Plastics, 2011,29(2):46⁃48. | |
11 | 石建江,邓凯桓,蒋婷婷,等. 改性聚酰胺66在铁道器材中的应用[J]. 铁道建筑,2008(5):95⁃97. |
SHI J J, DENG K H, JANG T T, et al. Application of improved polyimide 66 to railway equipment[J]. Railway Engineering, 2008(5):95⁃97. | |
12 | 郑宁来. 尼龙工程塑料在高铁中应用[J]. 国外塑料,2010,28(8):66⁃66. |
ZHENG N L. Application of nylon engineering plastic in high⁃speed rail[J]. World Plastics, 2010,28(8):66. | |
13 | 刘素侠,杜宁宁.基于尼龙的高速铁路复合材料研究[J].江苏科技信息,2016,32:50⁃53. |
LIU S X, DU N N. Research on composites for high speed railway based on nylon[J]. Jiangsu Science &Technology Information, 2016,32:50⁃53. | |
14 | 肖 鹏,林金火. 青藏铁路弹条Ⅰ型扣件绝缘轨距挡板的研制[J]. 工程塑料应用,2005,33(9):43⁃46. |
XIAO P, LIN J H. Research on insulated block for type I fastener in Qinghai⁃Tibet railway[J]. Engineering Plastics Application, 2005,33(9):43⁃46. | |
15 | 邱 鹏,崔永生,李双雯,等. 30t轴重重载铁路PA66基复合材料性能[J].工程塑料应用,2020,48(2):44⁃48. |
QIU P, CUI Y S, LI S W, et al. Performance of PA66 matrix composite for 30t axle load heavy haul railway[J]. Engineering Plastics Application, 2020,48(2):44⁃48. | |
16 | 张远庆,常 杰,乔立军,等.原材料对铁路扣件绝缘轨距块低温性能的影响研究[J].铁道建筑,2015,2:129⁃133. |
ZHANG Y Q, CHANG J, QIAO L J, et al. Study on influence of raw material on low temperature performance of insulated gauge block of rail fastener[J]. Railway Engineering, 2015,2:129⁃133. | |
17 | 朱建民. 聚酰胺树脂及其应用[M].北京:化学工业出版社,2011:189. |
[1] | 贾明印, 董贤文, 王佳明, 陈轲. 浸渍方式对纤维增强聚酰胺6复合材料真空袋压成型工艺及性能的影响[J]. 中国塑料, 2022, 36(9): 1-6. |
[2] | 董玥, 董霄, 朱德兆, 杨延翔, 罗琛, 李阳, 李锦山. 聚酰亚胺发展概况与应用展望[J]. 中国塑料, 2022, 36(9): 85-95. |
[3] | 陈佰全, 郑友明, 田际波, 张磊, 王金松, 林夏洁, 段亚鹏. 高含量玻璃纤维增强阻燃聚酰胺材料的制备与性能[J]. 中国塑料, 2022, 36(8): 42-48. |
[4] | 魏思淼, 邵路山, 许准, 刘艳婷, 赵思衡, 许博. 次磷酸盐⁃环四硅氧烷双基化合物复配二乙基次磷酸铝对PA6的阻燃性能研究[J]. 中国塑料, 2022, 36(7): 129-135. |
[5] | 王金业, 唐博虎, 杨立宁, 谢猛, 郭泽朝, 杨光. PA12试件多射流熔融成型工艺研究[J]. 中国塑料, 2022, 36(6): 81-86. |
[6] | 陈胜, 梁颖超, 吴方娟, 方辉, 范新凤, 陈晖, 王永刚. 聚酰胺6/双向经编玻璃纤维复合材料的制备及其界面改性研究[J]. 中国塑料, 2022, 36(5): 24-28. |
[7] | 许荣霞, 魏刚, 魏莉岚, 吴洁萃, 蒋雨江. Nano⁃SiO2及PA6复合改性PE⁃UHMW的摩擦磨损性能研究[J]. 中国塑料, 2022, 36(4): 47-52. |
[8] | 李素圆, 刘会鹏, 龚舜, 黄国桃, 李玉才, 吴鑫, 邓建平, 潘凯. 热塑性聚酰胺弹性体改性EVA复合发泡材料的制备及性能表征[J]. 中国塑料, 2022, 36(4): 6-14. |
[9] | 张九夫, 罗开强, 徐军, 郭宝华. 长玻璃纤维增强PA66复合材料的综合性能及其影响因素研究[J]. 中国塑料, 2022, 36(3): 1-8. |
[10] | 李泽洋, 岑兰, 陈胜, 陈伟杰, 杜兵华, 张二帅. 羧基丁腈橡胶/PA12热塑性弹性体的制备及性能研究[J]. 中国塑料, 2022, 36(3): 15-20. |
[11] | 李波, 龚军, 金学义, 孟晓宇. 碳纳米管改性方法对聚酰胺11性能影响研究[J]. 中国塑料, 2022, 36(2): 61-66. |
[12] | 于志省, 李应成, 王洪学, 庞馨蕾, 王宇遥. PA6/PC基激光直接成型材料研究及其立体结构制件制备[J]. 中国塑料, 2022, 36(2): 8-12. |
[13] | 韩顺涛, 段昌榆, 李明谦, 马秀清. 聚酰胺6无卤阻燃改性的研究进展[J]. 中国塑料, 2022, 36(12): 133-141. |
[14] | 张兆阳, 唐敢, 柯雪, 王鑫, 江学良, 刘仿军, 游峰. 硫酸钙晶须改性聚乙烯/聚酰胺6复合材料的热性能与力学性能研究[J]. 中国塑料, 2022, 36(11): 35-40. |
[15] | 周阳, 赵世坤, 赵彪, 刘会鹏, 黎杰, 曹志文, 潘凯. 半芳香族聚酰胺6T/6I/6的合成及其非等温结晶动力学研究[J]. 中国塑料, 2022, 36(10): 15-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||