
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
›› 2023, Vol. 37 ›› Issue (4): 86-94.
罗冠群1,王卫民2,汤元君2,李璇2,陶轩1
收稿日期:
2022-12-22
修回日期:
2023-01-28
出版日期:
2023-04-26
发布日期:
2023-04-26
基金资助:
Received:
2022-12-22
Revised:
2023-01-28
Online:
2023-04-26
Published:
2023-04-26
摘要: 首先使用HZSM-5作为催化剂,探究原位与异位催化方式对生物质与塑料共热解过程的影响。之后对HY、HZSM-5和Fe/HZSM-5 3种催化剂进行全面表征,进一步对比研究三者对生物质与塑料共热解过程的影响,并对3种催化剂积炭失活行为进行了分析。结果表明,原位催化生物油产率高于异位催化,但是异位催化方式强化了“双烯合成”和芳构化等反应,显著提升了芳烃的选择性,高达82.8 %。过渡金属Fe的引入提高了催化剂抑制积炭的能力,Fe/HZSM-5催化剂结焦量远少于HY和HZSM-5催化剂,仅为3.77 %。同HZSM-5相比, Fe/HZSM-5中Br?nsted酸强度减弱,略微降低了碳氢化合物的选择性,但是将碳氢化合物中芳烃的选择性提高了16.7 %。由于焦炭的附着,反应后的催化剂比表面积、孔容和酸强度均有所降低,进而降低了其催化活性。
罗冠群 王卫民 汤元君 李璇 陶轩. 催化剂与催化方式对生物质/塑料共热解的影响[J]. , 2023, 37(4): 86-94.
[1]WANG S, DAI G, YANG H, et al.Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review [J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. [2]YOGALAKSHMI K N, POORNIMA D T, SIVASHANMUGAM P, et al.Lignocellulosic biomass-based pyrolysis: A comprehensive review[J].Chemosphere, 2022, 286(Pt 2):131824- [3]RORRER J E, BECKHAM G T, ROMAN-LESHKOV Y.Conversion of Polyolefin Waste to Liquid Alkanes with Ru-Based Catalysts under Mild Conditions[J].JACS Au, 2021, 1(1):8-12 [4]XUE Y, ZHOU S, BROWN R C, et al.Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor [J]. Fuel, 2015, 156: 40-6. [5]UZOEJINWA B B, HE X, WANG S, et al.Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide [J]. Energy Conversion and Management, 2018, 163: 468-92. [6]JOHANSSON A-C, SANDSTR?M L, ?HRMAN O G W, et al.Co-pyrolysis of woody biomass and plastic waste in both analytical and pilot scale [J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 102-13. [7]WANG W, LUO G, ZHAO Y, et al.Kinetic and thermodynamic analyses of co-pyrolysis of pine wood and polyethylene plastic based on Fraser-Suzuki deconvolution procedure [J]. Fuel, 2022, 322. [8]XUE Y, KELKAR A, BAI X.Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer [J]. Fuel, 2016, 166: 227-36. [9]AHMED M H M, BATALHA N, MAHMUDUL H M D, et al.A review on advanced catalytic co-pyrolysis of biomass and hydrogen-rich feedstock: Insights into synergistic effect, catalyst development and reaction mechanism [J]. Bioresour Technol, 2020, 310: 123457. [10]DORADO C, MULLEN C A, BOATENG A A.Origin of carbon in aromatic and olefin products derived from HZSM-5 catalyzed co-pyrolysis of cellulose and plastics via isotopic labeling [J]. Applied Catalysis B: Environmental, 2015, 162: 338-45. [11]MULLEN C A D C, BOATENG A A.Catalytic co-pyrolysis of switchgrass and polyethylene over HZSM-5: Catalyst deactivation and coke formation[J].Journal of Analytical & Applied Pyrolysis, 2018, 129(JAN):195-203 [12]ALONSO D M, WETTSTEIN S G, DUMESIC J A.Bimetallic catalysts for upgrading of biomass to fuels and chemicals[J].Chem Soc Rev, 2012, 41(24):8075-98 [13]PERSSON H, DUMAN I, WANG S, et al.Catalytic pyrolysis over transition metal-modified zeolites: A comparative study between catalyst activity and deactivation [J]. Journal of Analytical and Applied Pyrolysis, 2019, 138: 54-61. [14]LI J, YU Y, LI X, et al.Maximizing carbon efficiency of petrochemical production from catalytic co-pyrolysis of biomass and plastics using gallium-containing MFI zeolites [J]. Applied Catalysis B: Environmental, 2015, 172-173: 154-64. [15]SUN T, LEI T, LI Z, et al.Catalytic co-pyrolysis of corn stalk and polypropylene over Zn-Al modified MCM-41 catalysts for aromatic hydrocarbon-rich oil production [J]. Industrial Crops and Products, 2021, 171. [16]SUN L, ZHANG X, CHEN L, et al.Comparision of catalytic fast pyrolysis of biomass to aromatic hydrocarbons over ZSM-5 and Fe/ZSM-5 catalysts [J]. Journal of Analytical and Applied Pyrolysis, 2016, 121: 342-6. [17]LI X, DONG W, ZHANG J, et al.Preparation of bio-oil derived from catalytic upgrading of biomass vacuum pyrolysis vapor over metal-loaded HZSM-5 zeolites[J].Journal of the Energy Institute, 2020, 93(2):605-13 [18]LUO G, RESENDE F L P.In-situ and ex-situ upgrading of pyrolysis vapors from beetle-killed trees [J]. Fuel, 2016, 166: 367-75. [19]WANG K, JOHNSTON P A, BROWN R C.Comparison of in-situ and ex-situ catalytic pyrolysis in a micro-reactor system [J]. Bioresour Technol, 2014, 173: 124-31. [20]SHAFAGHAT H, LEE H W, TSANG Y F, et al.In-situ and ex-situ catalytic pyrolysis/co-pyrolysis of empty fruit bunches using mesostructured aluminosilicate catalysts [J]. Chemical Engineering Journal, 2019, 366: 330-8. [21]MUNEER B, ZEESHAN M, QAISAR S, et al.Influence of in-situ and ex-situ HZSM-5 catalyst on co-pyrolysis of corn stalk and polystyrene with a focus on liquid yield and quality [J]. Journal of Cleaner Production, 2019, 237. [22]BORTOLATTO L B, BOCA SANTA R A A, MOREIRA J C, et al.Synthesis and characterization of Y zeolites from alternative silicon and aluminium sources [J]. Microporous and Mesoporous Materials, 2017, 248: 214-21. [23]ZHENG Y, WANG F, YANG X, et al.Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5 [J]. Journal of Analytical and Applied Pyrolysis, 2017, 126: 169-79. [24]NAKRANI D, BELANI M, BAJAJ H C, et al.Concentrated colloidal solution system for preparation of uniform Zeolite-Y nanocrystals and their gas adsorption properties [J]. Microporous and Mesoporous Materials, 2017, 241: 274-84. [25]黄明,朱亮,马中青,等.金属改性分子筛催化热解木质素制取轻质芳烃[J].燃料化学学报, 2021, 49(3):292-302 [26]HUANG M, ZHU L, MA Z, et al.Production of light aromatics from the fast pyrolysis of lignin catalyzed by metal-modified H-ZSM-5 zeolites[J].Journal of Fuel Chemistry and Technology, 2021, 49(3):292-302 [27]朱亮,黄明,丁紫霞,等.烘焙脱氧毛竹与高密度聚乙烯共催化热解制备轻质芳烃[J].燃料化学学报, 2022, 50(8):993-1002 [28]ZHU L, HUANG M, DING Z, et al.Production of light bio-aromatics from co-catalytic fast pyrolysis of torrefied bamboo and high-density polyethylene[J].Journal of Fuel Chemistry and Technology, 2022, 50(8):993-1002 [29]FANG Y, YANG F, HE X, et al.Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization[J].Frontiers of Chemical Science and Engineering, 2019, 13(3):543-53 [30]ILIOPOULOU E F, STEFANIDIS S D, KALOGIANNIS K G, et al.Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite [J]. Applied Catalysis B: Environmental, 2012, 127: 281-90. [31]KIM Y-M, JAE J, KIM B-S, et al.Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts [J]. Energy Conversion and Management, 2017, 149: 966-73. [32]BJORGEN M, SVELLE S, JOENSEN F, et al.Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species[J].Journal of Catalysis, 2007, 249(2):195-207 [33]LI J, WEI Y, LIU G, et al.Comparative study of MTO conversion over SAPO-34,H-ZSM-5 and H-ZSM-22: Correlating catalytic performance and reaction mechanism to zeolite topology[J].Catalysis Today, 2011, 171(1):221-8 [34]WANG J, JIANG J, ZHONG Z, et al.Catalytic fast co-pyrolysis of bamboo sawdust and waste plastics for enhanced aromatic hydrocarbons production using synthesized CeO2/γ-Al2O3 and HZSM-5 [J]. Energy Conversion and Management, 2019, 196: 759-67. [35]WANG J, ZHONG Z, DING K, et al.Catalytic fast co-pyrolysis of bamboo sawdust and waste tire using a tandem reactor with cascade bubbling fluidized bed and fixed bed system [J]. Energy Conversion and Management, 2019, 180: 60-71. [36]LI Y, NISHU, YELLEZUOME D, et al.Deactivation mechanism and regeneration effect of bi-metallic Fe-Ni/ ZSM-5 catalyst during biomass catalytic pyrolysis [J]. Fuel: A journal of fuel science, 2022, (Mar.15): 312. [37]AGULLO J, KUMAR N, BERENGUER D, et al.Catalytic pyrolysis of low density polyethylene over H-β,H-Y,H-Mordenite,and H-Ferrierite zeolite catalysts: Influence of acidity and structures[J].Kinetics and Catalysis, 2007, 48(4):535-40 [38]KIM B-S, KIM Y-M, LEE H W, et al.Catalytic Copyrolysis of Cellulose and Thermoplastics over HZSM-5 and HY[J].ACS Sustainable Chemistry & Engineering, 2016, 4(3):1354-63 [39]XUE Y, ZHOU S, BAI X.Role of Hydrogen Transfer during Catalytic Copyrolysis of Lignin and Tetralin over HZSM-5 and HY Zeolite Catalysts[J].ACS Sustainable Chemistry & Engineering, 2016, 4(8):4237-50 [40]BOCKHORN H, HORNUNG A, HORNUNG U, et al.Kinetic study on the thermal degradation of polypropylene and polyethylene [J]. Journal of Analytical & Applied Pyrolysis, 1999, 48: 93-109. |
[1] | 陈宇, 张春辉, 崔正, 孙同兵. 复合塑料软包装材料健康发展的机遇和挑战[J]. 中国塑料, 2023, 37(2): 56-61. |
[2] | 翟永怡, 李瑞丽, 卜禹豪, 姬娅茹. Mg掺杂UiO⁃66的制备及其塑料油品脱氯性能[J]. 中国塑料, 2023, 37(2): 62-70. |
[3] | 杨敏, 王莹, 陈蕾, 马惠芳, 闫桂焕, 王文语. 水中微塑料污染及转化去除的研究进展[J]. 中国塑料, 2023, 37(2): 90-100. |
[4] | 苗丹, 宋玉平, 王文倩. 我国中空吹塑行业发展现状及“十四五”期间重点产品、工艺和设备发展方向[J]. 中国塑料, 2022, 36(9): 57-62. |
[5] | 全淑苗, 张彦军, 宋小飞, 杜闰萍, 于丹. 废塑料脱氯技术现状及产业化进展[J]. 中国塑料, 2022, 36(9): 122-130. |
[6] | 林健辉, 卢嘉慧, 吴欣颖, 范雪滢, 邓桂荣, 高亮, 梅承芳, 杨永刚. 受控堆肥条件下可降解材料最终需氧生物分解能力测定的不确定度评定研究[J]. 中国塑料, 2022, 36(9): 140-147. |
[7] | 李娟, 李莹, 郭晓林, 张晨. 中国挤出聚苯乙烯(XPS)泡沫行业CO2混合发泡技术安全生产规范[J]. 中国塑料, 2022, 36(9): 160-166. |
[8] | 马腾, 刘倩倩, 魏晓丽, 宋海涛, 李明丰. 废塑料热解油中杂质硅、氯的影响及应对策略探讨[J]. 中国塑料, 2022, 36(8): 127-134. |
[9] | 白水泉, 边佳诚, 王乐园, 杨家华, 邓亚峰. 水环境微塑料去除技术的研究进展[J]. 中国塑料, 2022, 36(8): 166-175. |
[10] | 潘生林, 杨贵斌, 袁敏, 封亚辉, 侯建军, 张彰, 戴东情, 朱海欧, 蒋一昕. 绿色低碳背景下跨境再生塑料的风险监测演进方向[J]. 中国塑料, 2022, 36(8): 98-106. |
[11] | 郭雨文, 曾蓓, 高星, 王攀, 任连海. PET微塑料对污泥和厨余垃圾共消化的影响[J]. 中国塑料, 2022, 36(7): 51-60. |
[12] | 马占峰, 牛国强, 芦珊. 中国塑料加工业(2021)[J]. 中国塑料, 2022, 36(6): 142-148. |
[13] | 吴雄杰, 陶强, 朱东波, 程劲松, 储雨, 许磊. 食品接触用生物降解塑料购物袋材质鉴别与总迁移量研究[J]. 中国塑料, 2022, 36(5): 127-132. |
[14] | 万翼, 李莉, 菊春燕, 郝雪纯, 李润. 乌鲁木齐市塑料垃圾年产量预测及影响因素分析[J]. 中国塑料, 2022, 36(4): 121-127. |
[15] | 彭菁, 肖达, 吴映江, 李兵, 张龙, 李泽刚. 塑料结构壁排水管的国家与国际标准对比分析[J]. 中国塑料, 2022, 36(4): 135-141. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 33
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 264
|
|
|||||||||||||||||||||||||||||||||||||||||||||