
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2023, Vol. 37 ›› Issue (9): 125-132.DOI: 10.19491/j.issn.1001-9278.2023.09.018
• 综述 • 上一篇
相利学1(), 唐波1, 周刚1, 代旭明1, 王二轲1, 姜涛2, 吴新锋3(
)
收稿日期:
2023-04-04
出版日期:
2023-09-26
发布日期:
2023-09-18
通讯作者:
吴新锋,教授,xfwu@sspu.edu.cn作者简介:
相利学(1982-),男,硕士,主要从事高分子复合材料的研究工作, xianglixue@vulcan⁃hz.com
基金资助:
XIANG Lixue1(), TANG Bo1, ZHOU Gang1, DAI Xumin1, WANG Erke1, JIANG Tao2, WU Xinfeng3(
)
Received:
2023-04-04
Online:
2023-09-26
Published:
2023-09-18
Contact:
WU Xinfeng
E-mail:xianglixue@vulcan?hz.com;xfwu@sspu.edu.cn
摘要:
分析了3D打印技术在制备导热复合材料上的发展过程,介绍了不同种类的3D打印技术制备的高导热复合材料,包括碳纤维型、石墨烯型、碳纳米管型、氮化硼型、氮化铝型等,概述了不同类型的成型过程并归纳和总结了其导热性能。最后,对3D打印技术制备导热复合材料进行了总结与展望。
中图分类号:
相利学, 唐波, 周刚, 代旭明, 王二轲, 姜涛, 吴新锋. 3D打印技术在高导热复合材料中的应用研究[J]. 中国塑料, 2023, 37(9): 125-132.
XIANG Lixue, TANG Bo, ZHOU Gang, DAI Xumin, WANG Erke, JIANG Tao, WU Xinfeng. A review of application research on 3D printing technology in high thermal conductivity engineering plastics[J]. China Plastics, 2023, 37(9): 125-132.
材料 | 填料含量 | 导热系数/W•(m•K)-1 | 参考文献 |
---|---|---|---|
碳纤维/氧化铝/硅橡胶 | CFs(12 %),Al2O3(30 %) | 7.36 | [ |
碳纤维/光固化树脂 | CFs (7 %,质量分数) | 1.39 | [ |
碳纤维/热塑性聚氨酯/环氧树脂 | CFs(6.6 %) | 40.549 | [ |
碳纤维/ABS | CFs(1.7 %) | 0.22 | [ |
材料 | 填料含量 | 导热系数/W•(m•K)-1 | 参考文献 |
---|---|---|---|
碳纤维/氧化铝/硅橡胶 | CFs(12 %),Al2O3(30 %) | 7.36 | [ |
碳纤维/光固化树脂 | CFs (7 %,质量分数) | 1.39 | [ |
碳纤维/热塑性聚氨酯/环氧树脂 | CFs(6.6 %) | 40.549 | [ |
碳纤维/ABS | CFs(1.7 %) | 0.22 | [ |
材料 | 填料含量 | 导热系数/W•(m•K)-1 | 参考文献 |
---|---|---|---|
石墨烯/热塑性聚氨酯/二甲基甲酰胺 | 石墨烯,45 %(质量分数) | 12.00 | [ |
石墨烯/氧化铝粉/聚乳酸 | 石墨烯,71 %(质量分数) | 2.40 | [ |
石墨烯纳米片/线性低密度聚乙烯 | 石墨烯纳米片,15 % | 3.43 | [ |
氧化石墨烯/氮化硼/热塑性聚氨酯 | 还原氧化石墨烯,35 %(质量分数) | 2.61 | [ |
石蜡/石墨烯片/聚乳酸 | 石墨烯,15 %(质量分数) | 0.48 | [ |
材料 | 填料含量 | 导热系数/W•(m•K)-1 | 参考文献 |
---|---|---|---|
石墨烯/热塑性聚氨酯/二甲基甲酰胺 | 石墨烯,45 %(质量分数) | 12.00 | [ |
石墨烯/氧化铝粉/聚乳酸 | 石墨烯,71 %(质量分数) | 2.40 | [ |
石墨烯纳米片/线性低密度聚乙烯 | 石墨烯纳米片,15 % | 3.43 | [ |
氧化石墨烯/氮化硼/热塑性聚氨酯 | 还原氧化石墨烯,35 %(质量分数) | 2.61 | [ |
石蜡/石墨烯片/聚乳酸 | 石墨烯,15 %(质量分数) | 0.48 | [ |
材料 | 填料含量 (质量分数) | 导热系数/ W·(m·K)-1 | 参考 文献 |
---|---|---|---|
聚苯硫醚/碳纳米管 | 0.9 % CNT | 0.26 | [ |
聚酰胺/碳纳米管 | 5 % MWCNT | 0.33 | [ |
聚酰胺12/碳纳米管 | 2 % MWCNT | 1.09 | [ |
纤维素纳米纤维/碳纳米管 | 25 % MWCNT | 0.302 | [ |
聚乳酸/碳纳米管 | 12 % MWCNT | 0.32 | [ |
材料 | 填料含量 (质量分数) | 导热系数/ W·(m·K)-1 | 参考 文献 |
---|---|---|---|
聚苯硫醚/碳纳米管 | 0.9 % CNT | 0.26 | [ |
聚酰胺/碳纳米管 | 5 % MWCNT | 0.33 | [ |
聚酰胺12/碳纳米管 | 2 % MWCNT | 1.09 | [ |
纤维素纳米纤维/碳纳米管 | 25 % MWCNT | 0.302 | [ |
聚乳酸/碳纳米管 | 12 % MWCNT | 0.32 | [ |
材料 | 填料含量 | 导热系数/W•(m•K)-1 | 参考文献 |
---|---|---|---|
热塑性聚氨酯/氮化硼纳米片 | 30(质量分数)% h⁃BN | 1.8 | [ |
等规聚丙烯/氮化硼 | 35 %(质量分数) h⁃BN | 2 .0 | [ |
聚酰胺/氮化硼 | 33.5 %(质量分数) h⁃BN | 4.26 | [ |
光固化树脂/氮化硼 | 17.5 % h⁃BN | 1.36 | [ |
聚二甲基硅氧烷/氮化硼/氧化铝 | 35 %(质量分数) BN, 30 %(质量分数) Al2O3 | 3.64 | [ |
环氧丙烯酸酯/氮化硼 | 30 % (质量分数)h⁃BN | 1.6 | [ |
材料 | 填料含量 | 导热系数/W•(m•K)-1 | 参考文献 |
---|---|---|---|
热塑性聚氨酯/氮化硼纳米片 | 30(质量分数)% h⁃BN | 1.8 | [ |
等规聚丙烯/氮化硼 | 35 %(质量分数) h⁃BN | 2 .0 | [ |
聚酰胺/氮化硼 | 33.5 %(质量分数) h⁃BN | 4.26 | [ |
光固化树脂/氮化硼 | 17.5 % h⁃BN | 1.36 | [ |
聚二甲基硅氧烷/氮化硼/氧化铝 | 35 %(质量分数) BN, 30 %(质量分数) Al2O3 | 3.64 | [ |
环氧丙烯酸酯/氮化硼 | 30 % (质量分数)h⁃BN | 1.6 | [ |
材料 | 填料含量(质量分数) | 导热系数/W•(m•K) | 参考文献 |
---|---|---|---|
丙烯酸树脂/氮化铝 | 30 % | 0.42 | [ |
环氧丙烯酸酯/氮化铝/六方氮化硼 | AlN (30 %) | 1.31 | [ |
热塑性聚氨酯橡胶/氮化铝/六方氮化硼/多壁碳纳米管 | AlN (20 %) | 1.13 | [ |
热塑性聚氨酯橡胶/氮化铝/六方氮化硼 | AlN (20 %) | 0.90 | [ |
材料 | 填料含量(质量分数) | 导热系数/W•(m•K) | 参考文献 |
---|---|---|---|
丙烯酸树脂/氮化铝 | 30 % | 0.42 | [ |
环氧丙烯酸酯/氮化铝/六方氮化硼 | AlN (30 %) | 1.31 | [ |
热塑性聚氨酯橡胶/氮化铝/六方氮化硼/多壁碳纳米管 | AlN (20 %) | 1.13 | [ |
热塑性聚氨酯橡胶/氮化铝/六方氮化硼 | AlN (20 %) | 0.90 | [ |
1 | 谢远成,欧中红.电子设备散热技术的发展[J].舰船电子工程,2019,39(08):14⁃18. |
XIE Y C, OU Z H. Development of heat dissipation technology for electronic devices[J]. Ship Electronics Engineering, 2019, 39(08):14⁃18. | |
2 | 徐 康,石姗姗,姜 涛,等.碳纤维3D网络结构导热复合材料研究进展[J].工程塑料应用,2022,50(09):155⁃159. |
XU K, SHI S S, JIANG T, et al. Research progress on carbon fiber 3D network structured thermally conductive composites[J]. Engineering Plastics Applications, 2022, 50(09):155⁃159. | |
3 | 陈朝中,章潇慧,李要君,等.拉挤成型碳纤维增强EP复合材料高低温力学性能[J].工程塑料应用,2022,50(08):108⁃113. |
CHEN C Z, ZHANG X H, LI Y,et al. High and low temperature mechanical properties of pultrusion molded carbon fiber reinforced EP composites[J]. Engineering Plastics Applications, 2022, 50(08):108⁃113. | |
4 | Jiang T, Wang Y, Zhang S, et al. Epoxy/ copper⁃nickel metal foam composites with high thermal conductivity using an electroplating method[J]. J Mater Sci, 2022, 57, 15 374⁃15 384. |
5 | Huang Taoqing, Li Yongwei, Min Chen, et al. Bi⁃directional high thermal conductive epoxy composites with radially aligned boron nitride nanosheets lamellae, Composites Science and Technology[J]. 2020, 198, 108322. |
6 | Guo Changhong, Zhan Zaiji, Quan Lingxiao. Study of the preparation and properties of 0.5 vol% Ni⁃CNTs/Cu nanocomposites with magnetic alignment, Journal of Alloys and Compounds[J]. 2019, 781: 261⁃269. |
7 | Li Maohua, Ali Zulfiqar, Wei Xianzhe, et al. Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites[J].Composites Part B: Engineering, 2021, 208, 108599. |
8 | Sun Yafei, Wang Shaokai, Min Li, et al. Improvement of out⁃of⁃plane thermal conductivity of composite laminate by electrostatic flocking[J]. Materials & Design, 2018, 144, 263⁃270. |
9 | Roudný Petr, Syrový Tomáš. Thermal conductive composites for FDM 3D printing: A review, opportunities and obstacles, future directions[J]. Journal of Manufacturing Processes,2022, 83:667⁃677. |
10 | 朱光达,侯 仪,赵 宁,等.光固化3D打印聚合物材料的研究进展[J].中国材料进展,2022,41(01):68⁃80. |
ZHU G D, HOU Y, ZHAO N,et al. Research progress of light⁃cured 3D printing polymer materials[J]. Materials China, 2022, 41(01):68⁃80. | |
11 | 张向阳,贾仕奎,赵中国,等.3D打印用聚合物材料的研究进展[J].工程塑料应用,2020,48(05):156⁃159. |
ZHANG X Y, JIA S K, ZHAO C,et al. Research progress of polymer materials for 3D printing[J]. Engineering Plastics Applications,2020,48(05):156⁃159. | |
12 | 陈彩珠,潘汉军.3D打印高分子材料研究进展[J].工程塑料应用,2016,44(09):137⁃140. |
CHEN C Z, PAN H J. Research progress of 3D printing polymer materials[J]. Engineering Plastics Applications, 2016, 44(09):137⁃140. | |
13 | Hao Mengyuan, Zhen Hu, Huang Yudong, et al. Enhanced both in⁃plane and through⁃thickness thermal conductivity of carbon fiber/epoxy composites by fabricating high thermal conductive coaxial PAN/PBO carbon fibers[J]. Composites Part B: Engineering, 2022, 229, 109468. |
14 | Mileiko S. Carbon⁃fibre/metal⁃matrix composites: a review[J]. Journal of Composites Science, 2022, 6(10), 297. |
15 | Ji Jiacheng, Chiang Sum⁃Wai, Liu Mengjing, et al. Enhanced thermal conductivity of alumina and carbon fibre filled composites by 3⁃D printing[J]. Thermochimica Acta, 2020, 690, 178649. |
16 | Ren Luquan, Zhou Xueli, Xue Jingze, et al. Thermal metamaterials with site⁃specific thermal properties fabricated by 3D magnetic printing[J]. Advanced Materials Technologies, 2019, 4, 1900296. |
17 | Zhang H, Zhao K, Hu Q, et al. Preparation and 3D printing of high⁃thermal⁃conductivity continuous mesophase⁃pitch⁃based carbon fiber/epoxy composites[J]. J Zhejiang Univ Sci A, 2023, 24:162⁃172. |
18 | Shemelya Corey, Angel De La Rosa, et al. Anisotropy of thermal conductivity in 3D printed polymer matrix composites for space based cube satellites[J]. Additive Manufacturing, 2017, 16:186⁃196. |
19 | Tan, Hai, Wang Deguo, Guo Yanbao. Thermal growth of graphene: a review[J]. Coatings, 2018, 8:40. |
20 | Mu Jie, Gao Fangjian, Gan Cui, et al. A comprehensive review of anticorrosive graphene⁃composite coatings[J]. Progress in Organic Coatings, 2021, 157, 106321. |
21 | Guo Haichang, Zhao Haoyuan, Niu Hongyu, et al. Highly thermally conductive 3D printed graphene filled polymer composites for scalable thermal management applications[J]. ACS Nano, 2021, 15: 6 917⁃6 928. |
22 | Jiang Jun, Yang Shuangqiao, Li Linhuan, et al. High thermal conductivity polylactic acid composite for 3D printing: Synergistic effect of graphene and alumina[J]. Polymers Advanced Technologies, 2020, 6:1 291⁃1 299. |
23 | Jing Jingjing, Chen Yinghong, Shi Shaohong, et al. Facile and scalable fabrication of highly thermal conductive polyethylene/graphene nanocomposites by combining solid⁃state shear milling and FDM 3D⁃printing aligning methods[J]. Chemical Engineering Journal, 2020, 402, 126218. |
24 | Wang Shuzhan, Hui He, Xun Ye, et al. Design of rGO⁃BN hybrids for enhanced thermal management properties of polyurethane composites fabricated by 3D printing[J]. Composites Science and Technology, 2022, 227, 109591. |
25 | Kim J, Shin D, Jang A, et al. 3D printed injection molding for prototyping batch fabrication of macroscale graphene/paraffin spheres for thermal energy management[J]. JOM, 2019, 71: 4 569⁃4 577. |
26 | Ahmad Muhammad, Ravi P Silva S. Low temperature growth of carbon nanotubes ⁃ A review[J]. Carbon, 2020, 158: 24⁃44. |
27 | Pan Shengyou, Shen Hongyao, Zhang Linchu. Effect of carbon nanotube on thermal, tribological and mechanical properties of 3D printing polyphenylene sulfide[J]. Additive Manufacturing, 2021, 47, 102247. |
28 | Lučić Blagojević S, Šorgo N, Buhin Šturlić Z. Influence of carbon nanotubes on polyamide properties[J]. Chem Biochem Eng Q, 2019, 33: 337⁃346. |
29 | Yue Yuan, Hu Huanbo, Wei Wu, et al. Hybrid of multi⁃dimensional fillers for thermally enhanced polyamide 12 composites fabricated by selective laser sintering[J]. Polymer Composites, 2021, 8:4 105⁃4 114. |
30 | Feng Wang, Yang Zhijie, Hu Xiangzhou, et al. Coaxial 3D printed anisotropic thermal conductive composite aerogel with aligned hierarchical porous carbon nanotubes and cellulose nanofibers[J]. Smart Materials and Structures, 2022, 31:4. |
31 | Spinelli G, Kotsilkova R, Ivanov E, et al. Dielectric spectroscopy and thermal properties of poly(lactic) acid reinforced with carbon⁃based particles: experimental study and design theory[J]. Polymers, 2020, 12:2 414. |
32 | Angizi Shayan, Sayed Ali Ahmad Alem, Mahdi Hasanzadeh Azar, et al. A comprehensive review on planar boron nitride nanomaterials: From 2D nanosheets towards 3D quantum dots[J]. Progress in Materials Science, 2022, 124, 100884. |
33 | Sharma Vaishali, Kagdada Hardik L, Jha Prafulla K, et al. Thermal transport properties of boron nitride based materials: A review[J]. Renewable and Sustainable Energy Reviews, 2020, 120, 109622. |
34 | Liu Mengjing, Chiang Sun⁃Wai, Chu Xiaodong, et al. Polymer composites with enhanced thermal conductivity via oriented boron nitride and alumina hybrid fillers assisted by 3⁃D printing[J]. Ceramics International, 2020, 13:20 810⁃20 818. |
35 | Li Jiaqi, Leng Jie, Jiang Yixin, et al. Experimental characterization of 3D printed PP/h⁃BN thermally conductive composites with highly oriented h⁃BN and the effects of filler size[J]. Composites Part A: Applied Science and Manufacturing, 2021, 150, 106586. |
36 | Chen Minhang, Yin Tingting, Peng Fu, et al. Construction and mechanism of 3D printed polyamide 12/boron nitride template composites with localized and unidirectional thermally conductive property[J]. Composites Part B: Engineering, 2021, 225, 109267. |
37 | Lee Seonmin, Park Dabin, Cho Youngsung, et al. Vertically⁃aligned boron nitride composite as a highly thermally conductive material using magnetic field⁃assisted three⁃dimensional printing[J]. Ceramics International, 2023, 49:7 050⁃7 056. |
38 | Jian Gao, Hao Mengyuan, Wang Yangyang, et al. 3D printing boron nitride nanosheets filled thermoplastic polyurethane composites with enhanced mechanical and thermal conductive properties[J]. Additive Manufacturing, 2022, 56, 102897. |
39 | Lin Yucong, Deng Weijian, Rui Yueyue, et al. Enhanced thermal conductivity of epoxy acrylate/h⁃BN and AlN composites by photo⁃curing 3D printing technology[J]. Journal of Applied Polymer Science, 2022, 139, e52629. |
40 | Lee Seonmin, Park Dabin, Kim Jooheon. 3D⁃printed surface⁃modified aluminum nitride reinforced thermally conductive composites with enhanced thermal conductivity and mechanical strength[J]. Polymers for Advanced Technologies, 2022, 4(33):1 291⁃1 297. |
41 | Zhang Xiyun, Wei Wu, Hu Huanbo, et al. Multi⁃dimensional fillers synergistically enhanced thermal conductivity of TPU composites in selective laser sintering technology[J]. Materials Today Communications, 2022, 33, 104012. |
42 | Zhang Xiyun, Wei Wu, Zhao Tianyu, et al. The combination of AlN and h⁃BN for enhancing the thermal conductivity of thermoplastic polyurethane composites prepared by selective laser sintering[J]. Journal of Applied Polymer Science, 2022, 43(139), e53051. |
43 | Moon Sumin, Kim Hanul, Lee Kyoungmun, et al. 3D Printable concentrated liquid metal composite with high thermal conductivity[J]. iScience, 2021, 10(24), 103183. |
[1] | 李家伟 张克宏 李文慧 郭星雨 丁宇. 聚羟基脂肪酸酯/茶粉复合材料的制备与性能研究[J]. , 2023, 37(6): 10-15. |
[2] | 王怡佳 张燕 陈婷 刘继延 刘学清. 聚氨酯/甲基二苯基氧化膦的冷结晶及阻燃性能研究[J]. , 2023, 37(5): 104-109. |
[3] | 管羽 付烨 翁云宣. 生物降解聚酯降解性能调控研究进展[J]. , 2023, 37(3): 103-112. |
[4] | 金清平, 刘运蝶. 纤维增强复合材料约束混凝土柱耐久性研究进展[J]. 中国塑料, 2023, 37(2): 121-128. |
[5] | 董竞辉, 桑晓明, 陈祯, 尹伟浩, 姜骞, 陈兴刚. 短切碳纤维对聚苯腈/碳纤维复合材料性能的影响[J]. 中国塑料, 2023, 37(2): 31-37. |
[6] | 李传敏, 杨建军, 李洋, 王洛唯. PDMS/SiC功能梯度复合材料3D打印主动混合喷头结构设计与工艺参数优化[J]. 中国塑料, 2023, 37(2): 71-76. |
[7] | 汪杰, 张伟蒙, 胡晶. 聚乳酸⁃羟基乙酸共聚物涂层对聚乳酸3D打印支架的性能影响[J]. 中国塑料, 2023, 37(1): 1-7. |
[8] | 焦锐敏, 何小芳, 董青松, 王林, 曹新鑫. 共改性煤粉增强丁苯橡胶的硫化、力学和热稳定性能研究[J]. 中国塑料, 2023, 37(1): 46-53. |
[9] | 刘昊育, 辛菲, 杜家盈, 樊晓玲. 无卤阻燃聚酯复合材料研究进展[J]. 中国塑料, 2023, 37(1): 133-143. |
[10] | 贾明印, 董贤文, 王佳明, 陈轲. 浸渍方式对纤维增强聚酰胺6复合材料真空袋压成型工艺及性能的影响[J]. 中国塑料, 2022, 36(9): 1-6. |
[11] | 张林, 夏章川, 何亚东, 信春玲, 王瑞雪, 任峰. 等离子体射流载气流量大小对玻璃纤维改性效果影响的研究[J]. 中国塑料, 2022, 36(9): 7-15. |
[12] | 焦志伟, 王克琛, 张杨, 杨卫民. 基于碳纳米涂层沉积滑石粉与炭黑协同填充PVC/ABS复合材料的性能研究[J]. 中国塑料, 2022, 36(8): 10-15. |
[13] | 喻九阳, 王众浩, 陈琦, 夏亚忠. 基于阀体制造的先进树脂基复合材料性能研究[J]. 中国塑料, 2022, 36(8): 16-22. |
[14] | 张陶忠, 陈晓龙, 郝晓宇, 于福家. 滑石、CaCO3、BaSO4填充PP复合材料力学性能及界面相互作用对比[J]. 中国塑料, 2022, 36(8): 36-41. |
[15] | 曲玉婷, 王立梅, 齐斌. 聚乙二醇对聚乳酸/淀粉纳米晶复合材料性能的影响[J]. 中国塑料, 2022, 36(8): 56-61. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||