
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (1): 124-133.DOI: 10.19491/j.issn.1001-9278.2024.01.018
• 综述 • 上一篇
收稿日期:
2023-07-23
出版日期:
2024-01-26
发布日期:
2024-01-22
作者简介:
韩志勇(1970—),男,教授,研究方向为材料表面与界面性能研究,zyhan@cauc.edu.cn
HAN Zhiyong(), MA Sijing, LU Pengcheng
Received:
2023-07-23
Online:
2024-01-26
Published:
2024-01-22
摘要:
论述了粘接用铝合金和复合材料表面处理技术,重点阐述了不同表面处理手段的目的、机理、分类以及影响表面处理品质的工艺参数;此外,对近些年来国内外铝合金混合处理技术和具有前景的复合材料能量处理技术的原理及优势进行了分析,并提供了较为有效的材料表面处理新思路。
中图分类号:
韩志勇, 马斯景, 路鹏程. 铝合金与复合材料连接表面处理方法的研究进展[J]. 中国塑料, 2024, 38(1): 124-133.
HAN Zhiyong, MA Sijing, LU Pengcheng. Research progress in surface treatment methods for connecting aluminum alloys and composite materials[J]. China Plastics, 2024, 38(1): 124-133.
喷砂型号 | 表面粗糙度(Ra)/nm | 最大剥离力/N | 剥离强度/kN·m-1 |
---|---|---|---|
46 | 1.6 | 133.6 | 5.34 |
60 | 2.0 | 201.8 | 8.07 |
80 | 2.8 | 185.5 | 7.42 |
喷砂型号 | 表面粗糙度(Ra)/nm | 最大剥离力/N | 剥离强度/kN·m-1 |
---|---|---|---|
46 | 1.6 | 133.6 | 5.34 |
60 | 2.0 | 201.8 | 8.07 |
80 | 2.8 | 185.5 | 7.42 |
类型 | 工艺方法 | 优点 | 缺点 |
---|---|---|---|
物理法 | 喷砂法 | 操作简单,成本低廉。 | 粉尘污染、 细小的部位难以处理、 表面均匀性差、易损坏基材表面。 |
打磨法 | |||
剥离层法 | 可以重复利用,易产生均匀的粘接面。 | 制备过程复杂,使用条件受限。 | |
化学法 | 阳极氧化法 | 操作简单,成本低廉,适用于形状复杂的构件,表面均匀性好。 | 化学主副反应复杂,对环境有害, 基材表面洁净度要求高, 处理后应立即进行粘接。 |
溶胶凝胶法 | |||
能量法 | 激光法 | 表面均匀性好,低损伤,处理时间短,处理效果可持续,环境友好。 | 设备昂贵,有难以控制的非线性过程。 |
等离子体处理法 | |||
紫外线法 | |||
混合法 | 物理、化学和能量法的组合 | 充分发挥它们各自的优势,后续处理弥补了前面处理的缺陷,以满足特定的应用要求。 | 处理工艺复杂,需要较高的技术水平和生产条件。设备和制造成本均较高。复杂的表面性能,需要更复杂的理论模型和实验方法。 |
类型 | 工艺方法 | 优点 | 缺点 |
---|---|---|---|
物理法 | 喷砂法 | 操作简单,成本低廉。 | 粉尘污染、 细小的部位难以处理、 表面均匀性差、易损坏基材表面。 |
打磨法 | |||
剥离层法 | 可以重复利用,易产生均匀的粘接面。 | 制备过程复杂,使用条件受限。 | |
化学法 | 阳极氧化法 | 操作简单,成本低廉,适用于形状复杂的构件,表面均匀性好。 | 化学主副反应复杂,对环境有害, 基材表面洁净度要求高, 处理后应立即进行粘接。 |
溶胶凝胶法 | |||
能量法 | 激光法 | 表面均匀性好,低损伤,处理时间短,处理效果可持续,环境友好。 | 设备昂贵,有难以控制的非线性过程。 |
等离子体处理法 | |||
紫外线法 | |||
混合法 | 物理、化学和能量法的组合 | 充分发挥它们各自的优势,后续处理弥补了前面处理的缺陷,以满足特定的应用要求。 | 处理工艺复杂,需要较高的技术水平和生产条件。设备和制造成本均较高。复杂的表面性能,需要更复杂的理论模型和实验方法。 |
1 | ZHANG J, LIN G, VAIDYA U, et al. Past, present and future prospective of global carbon fibre composite developments and applications[J]. Composites Part B: Engineering, 2023,250: 110⁃463. |
2 | 曹春晓. 一代材料技术,一代大型飞机[J]. 航空学报, 2008, 215(3): 701⁃706. |
CAO C X. A generation of material technology, a generation of large aircraft [J]. Journal of Aeronautics, 2008(3): 701⁃706. | |
3 | AMANCIO⁃FILHOST, DOSSANTOSJ F. Joining of polymers and polymer⁃metal hybrid structures: recent developments and trends[J]. Polymer Engineering & Science, 2009, 49(8): 1 461⁃1 476. |
4 | MÖLLER F, THOMYC, VOLLERTSENF, et al. Novel method for joining CFRP to aluminium[J]. Physics Procedia, 2010(5): 37⁃45. |
5 | 张新建, 吴宏亮, 陈 洁, 等. 民用飞机胶接技术应用分析[J]. 航空制造技术, 2014, 57(17): 46⁃49. |
ZHANG X J, WU H L, CHEN J, et al. Application analysis of adhesive bonding technology in civil aircraft[J]. Aviation Manufacturing Technology, 2014, 57(17): 46⁃49. | |
6 | ZHANG X S, CHEN Y J, HU J L. Recent advances in the development of aerospace materials[J]. Progress in Aerospace Sciences, 2018, 97: 22⁃34. |
7 | LI Y, BU H C, YANG H Y, et al. Effect of laser heat input on the interface morphology during laser joining of CFRTP and 6061 aluminum alloy[J]. Journal of Manufacturing Processes, 2020, 50: 366⁃379. |
8 | ASUNDI A, CHOI A Y N. Fiber metal laminates: an advanced material for future aircraft[J]. Journal of Materials Processing Technology, 1997, 63(1⁃3): 384⁃394. |
9 | TAN B, HU Y S, YUAN B Y, et al. Optimizing adhesive bonding between CFRP and Al alloy substrate through resin pre⁃coating by filling micro⁃cavities from sandblasting[J]. International Journal of Adhesion and Adhesives, 2021, 110: 102952. |
10 | KWON D J, KIM J H, KIM Y J, et al. Comparison of interfacial adhesion of hybrid materials of aluminum/carbon fiber reinforced epoxy composites with different surface roughness[J]. Composites Part B: Engineering, 2019, 170: 11⁃18. |
11 | PARK S Y, CHOI W J, CHOI H S, et al. Effects of surface pre⁃treatment and void content on GLARE laminate process characteristics[J]. Journal of Materials Processing Technology, 2010, 210(8): 1 008⁃1 016. |
12 | 章宇界, 赵 鑫, 郭金海, 等. 复合材料胶接用金属喷砂工艺研究[J]. 玻璃钢/复合材料, 2019 (1): 71⁃74. |
ZHANG Y J, ZHAO X, GUO J H, et al. Study on metal sandblasting process for composite material bonding[J]. Fiberglass/Composites, 2019 (1): 71⁃74. | |
13 | 张爱爱,潘 蕾,张 帅,等.AA5083铝合金表面处理对AA5083/低温胶胶接性能的影响[J].表面技术,2017,46(10):179⁃184. |
ZHANG A A, PAN L, ZHANG S, et al. Effect of surface treatment on the bonding performance of AA5083/low temperature adhesive joint. Surface Technology, 2017, 46(10): 179⁃184. | |
14 | ZHANG Z, SHAN J G, TAN X H, et al. Effect of anodizing pre⁃treatment on laser joining CFRP to aluminum alloy A6061[J]. International Journal of Adhesion and Adhesives, 2016, 70: 142⁃151. |
15 | ZHANG J S, ZHAO X H, ZUO Y, et al. The bonding strength and corrosion resistance of aluminum alloy by anodizing treatment in a phosphoric acid modified boric acid/sulfuric acid bath[J]. Surface and Coatings Technology, 2008, 202(14): 3 149⁃3 156. |
16 | 祝 萌, 朱光明, 徐 博. 磷酸阳极化工艺对铝合金胶接性能的影响[J]. 材料保护, 2014, 47(8): 59⁃62. |
ZHU M, ZHU G M, XU B. Influence of phosphoric acid anodizing process on bonding performance of aluminum alloy[J]. Materials Protection, 2014, 47(8): 59⁃62. | |
17 | YE J, WANG H, DONG J L, et al. Metal surface nanopatterning for enhanced interfacial adhesion in fiber metal laminates[J]. Composites Science and Technology, 2021, 205: 108651. |
18 | RAO M C. Pulsed laser deposition—ablation mechanism and applications[C]//International Journal of Modern Physics: Conference Series. World Scientific Publishing Company, 2013, 22: 355⁃360. |
19 | 李宇强,郭玲玉,蒋 平,等. 铝合金激光清洗表面形貌变化的实验研究及工艺参数优化[J]. 中国激光,2021,48(22):161⁃171. |
LI Y Q, GUO L Y, JIANG P, et al. Experimental study and process parameter optimization of surface morphology changes of aluminum alloy by laser cleaning[J]. Chinese Journal of Lasers, 2021, 48(22): 161⁃171. | |
20 | ZHANG Z, SHAN J G, TAN X H, et al. Improvement of the laser joining of CFRP and aluminum via laser pre⁃treatment[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90: 3 465⁃3 472. |
21 | MARESSA P, ANODIO L, BERNASCONI A, et al. Effect of surface texture on the adhesion performance of laser treated Ti6Al4V alloy[J]. The Journal of Adhesion, 2015, 91(7): 518⁃537. |
22 | YAN X, OUYANG J, ZHANG C, et al. Plasma medicine for neuroscience⁃an introduction[J]. Chinese Neurosurgical Journal, 2019, 5(1): 1⁃8. |
23 | SALEEMA N, GALLANT D. Atmospheric pressure plasma oxidation of AA6061⁃T6 aluminum alloy surface for strong and durable adhesive bonding applications[J]. Applied Surface Science, 2013, 282: 98⁃104. |
24 | PAPE P G. Adhesion promoters: Silane coupling agents[M]. Applied plastics engineering handbook. William Andrew Publishing, 2011: 503⁃517. |
25 | LI X P, XU D H, GONG N N, et al. Improving the strength of injection molded aluminum/polyphenylene sulfide lap joints dependence on surface microstructure and composition[J]. Materials & Design, 2019, 179: 107875 |
26 | 王胜先,林薇薇,段洪东, 等. 硅烷改性丙烯酸系乳胶涂料抗蚀性的阻抗谱研究[J]. 中国腐蚀与防护学报, 1998, 12(1): 64⁃68. |
WANG S X, LIN W W, DUAN H D, et al. Study on the corrosion resistance of silane⁃modified acrylic latex coatings by impedance spectroscopy[J]. Journal of Chinese Society for Corrosion and Protection, 1998, 12(1): 64⁃68. | |
27 | WU M, TONG X T, WANG H, et al. Effect of ultrasonic vibration on adhesive bonding of CFRP/Al alloy joints grafted with silane coupling agent[J]. Polymers, 2020, 12(4): 947. |
28 | ZHU W, XIAO H, WANG J, et al. Effect of coupling agent quantity on composite interface structure and properties of fiber metal laminates[J]. Polymer Composites, 2021, 42(7): 3 195⁃3 205. |
29 | HU Y, YUAN B, CHENG F, et al. NaOH etching and resin pre⁃coating treatments for stronger adhesive bonding between CFRP and aluminium alloy[J]. Composites Part B: Engineering, 2019, 178: 107478. |
30 | WANG B, BAI Y, HU X, et al. Enhanced epoxy adhesion between steel plates by surface treatment and CNT/short⁃fibre reinforcement[J]. Composites Science and Technology, 2016, 127: 149⁃157. |
31 | RIDER A N, ARNOTT D R, MAZZA J J. Surface treatment and repair bonding[M]. Aircraft Sustainment and Repair: Butterworth⁃Heinemann, 2018: 253⁃323. |
32 | PARK S Y, CHOI W J, CHOI H S. A review of the recent developments in surface treatment techniques for bonded repair of aluminum airframe structures[J]. International Journal of Adhesion and Adhesives, 2018, 80: 16⁃29. |
33 | Bardis J D. Effects of surface preparation on the long⁃term durability of adhesively bonded composite joints[M]. University of California, Santa Barbara, 2002:185⁃284. |
34 | Delolmo R, Tiringer U, Milošev I, et al. Hybrid sol⁃gel coatings applied on anodized AA2024⁃T3 for active corrosion protection[J]. Surface and Coatings Technology, 2021, 419: 127251 |
35 | KHAN F, QAYYUM F, ASGHAR W, et al. Effect of various surface preparation techniques on the delamination properties of vacuum infused Carbon fiber reinforced aluminum laminates Experimentation and numerical simulation[J]. Journal of Mechanical Science and Technology, 2017, 31: 5 265⁃5 272. |
36 | SILVA D A, ÖCHSNER ANDREAS, ADAMS ROBERT D.. Handbook of adhesion technology[M]. Heidelberg: Springer, 2011:393⁃533. |
37 | FERNANDES J C S, FERREIRA M G S, HADDOW D B, et al. Plasma⁃polymerised coatings used as pre⁃treatment for aluminium alloys[J]. Surface and Coatings Technology, 2002, 154(1): 8⁃13. |
38 | Arenas J M, Alía C, Narbón J J, et al. Considerations for the industrial application of structural adhesive joints in the aluminium⁃composite material bonding[J]. Composites Part B: Engineering, 2013, 44(1): 417⁃423. |
39 | KANERVA M, SAARELA O. The peel ply surface treatment for adhesive bonding of composites: a review[J]. International Journal of Adhesion and Adhesives, 2013, 43: 60⁃69. |
40 | TAO R, ALFANO M, LUBINEAU G. In situ analysis of interfacial damage in adhesively bonded composite joints subjected to various surface pre⁃treatments[J]. Composites Part A: Applied Science and Manufacturing, 2019, 116: 216⁃223. |
41 | BÉNARD Q, FOIS M, GRISEL M. Influence of fibre reinforcement and peel ply surface treatment towards adhesion of composite surfaces[J]. International journal of adhesion and adhesives, 2005, 25(5): 404⁃409. |
42 | KATNAM K B, SILVA L F M DA, YOUNG T M. Bonded repair of composite aircraft structures: a review of scientific challenges and opportunities[J]. Progress in Aerospace Sciences, 2013, 61: 26⁃42. |
43 | Zaldivar R J, Kim H I, Steckel G L, et al. The effect of abrasion surface treatment on the bonding behavior of various carbon fiber⁃reinforced composites[J]. Journal of Adhesion Science and Technology, 2012, 26(10/11): 1 573⁃1 590. |
44 | ZHOU L, QIAN Y, ZHU Y, et al. The effect of different surface treatments on the bond strength of PEEK composite materials[J]. Dental Materials, 2014, 30(8): 209⁃215. |
45 | NJUHOVIC E, WITT A, KEMPF M, et al. Influence of the composite surface structure on the peel strength of metallized carbon fibre⁃reinforced epoxy[J]. Surface and Coatings Technology, 2013, 232: 319⁃325. |
46 | BECHIKH A, KLINKOVA O, MAALEJ Y, et al. Effect of dry abrasion treatments on composite surface quality and bonded joints shear strength[J]. International Journal of Adhesion and Adhesives, 2022, 113: 103058. |
47 | 岳海亮,张国利,马 欢, 等. 聚氨酯弹性体与复合材料层合板粘接性能的研究[J]. 天津纺织科技, 2016 (1): 11⁃13. |
YUE H L, ZHANG G L, MA H, et al. Study on bonding properties of polyurethane elastomer and composite laminates[J]. Tianjin Textile Science and Technology, 2016 (1): 11⁃13. | |
48 | AWAJA F, GILBERT M, KELLY G, et al. Adhesion of polymers[J]. Progress in Polymer Science, 2009, 34(9): 948⁃968. |
49 | HAMDI M, SALEH M N, POULIS J A. Improving the adhesion strength of polymers: effect of surface treatments[J]. Journal of Adhesion Science and Technology, 2020, 34(17): 1 853⁃1 870. |
50 | GODDARD J M, HOTCHKISS J H. Polymer surface modification for the attachment of bioactive compounds[J]. Progress in Polymer Science, 2007, 32(7): 698⁃725. |
51 | MATHIESON I, BRADLEY R H. Improved adhesion to polymers by UV/ozone surface oxidation[J]. International Journal of Adhesion and Adhesives, 1996, 16(1): 29⁃31. |
52 | SHI H, SINKE J, BENEDICTUS R. Surface modification of PEEK by UV irradiation for direct co⁃curing with carbon fibre reinforced epoxy prepregs[J]. International Journal of Adhesion and Adhesives, 2017, 73: 51⁃57. |
53 | SHENTON M J, LOVELL⁃HOARE M C, STEVENS G C. Adhesion enhancement of polymer surfaces by atmospheric plasma treatment[J]. Journal of Physics D: Applied Physics, 2001, 34(18): 2 754. |
54 | WU M J, JIA L X, LU S L, et al. Interfacial performance of high⁃performance fiber⁃reinforced composites improved by cold plasma treatment: a review[J]. Surfaces and Interfaces, 2021, 24: 101077. |
55 | Sun C, Min J, Lin J, et al. Effect of atmospheric pressure plasma treatment on adhesive bonding of carbon fiber reinforced polymer[J]. Polymers, 2019, 11(1): 139. |
56 | LI C, VISWANATHAN⁃CHETTIAR S, SUN F, et al. Effect of CFRP surface topography on the adhesion and strength of composite⁃composite and composite⁃metal joints[J]. Composites Part A: Applied Science and Manufacturing, 2023, 164: 107275. |
57 | Wen L W, Xu X Y, Qin L H. Effect of low⁃temperature plasma surface treatment on bonding properties of single⁃lap joint of thermosetting composites[J]. Polymers, 2023, 15(7): 1 631. |
58 | KIM J K. Characteristics of plasma surface treated composite adhesive joints at high environmental temperature[J]. Composite Structures, 2002, 57(1⁃4): 37⁃46. |
59 | WILLIAMS T S, YU H, YEH P C, et al. Atmospheric pressure plasma effects on the adhesive bonding properties of stainless steel and epoxy composites[J]. Journal of Composite Materials, 2014, 48(2): 219⁃233. |
60 | SCHÄFER J, HOFMANN T, HOLTMANNSPÖTTER J, et al. Atmospheric⁃pressure plasma treatment of polyamide 6 composites for bonding with polyurethane[J]. Journal of Adhesion Science and Technology, 2015, 29(17): 1 807⁃1 819. |
61 | COMYN J, MASCIA L, XIAO G, et al. Plasma⁃treatment of polyetheretherketone (PEEK) for adhesive bonding[J]. International Journal of Adhesion and Adhesives, 1996, 16(2): 97⁃104. |
62 | ENCINAS N, OAKLEY B R, BELCHER M A, et al. Surface modification of aircraft used composites for adhesive bonding[J]. International Journal of Adhesion and Adhesives, 2014, 50: 157⁃163. |
63 | WANG D W, LI Y, ZOU T C, et al. Increasing strength and fracture toughness of carbon fibre⁃reinforced plastic adhesively bonded joints by combining peel⁃ply and oxygen plasma treatments[J]. Applied Surface Science, 2023, 612: 155768. |
64 | JÖLLY I, SCHLÖGL S, WOLFAHRT M, et al. Chemical functionalization of composite surfaces for improved structural bonded repairs[J]. Composites Part B: Engineering, 2015, 69: 296⁃303. |
[1] | 相利学, 唐波, 周刚, 代旭明, 王二轲, 姜涛, 吴新锋. 3D打印技术在高导热复合材料中的应用研究[J]. 中国塑料, 2023, 37(9): 125-132. |
[2] | 李家伟 张克宏 李文慧 郭星雨 丁宇. 聚羟基脂肪酸酯/茶粉复合材料的制备与性能研究[J]. , 2023, 37(6): 10-15. |
[3] | 王怡佳 张燕 陈婷 刘继延 刘学清. 聚氨酯/甲基二苯基氧化膦的冷结晶及阻燃性能研究[J]. , 2023, 37(5): 104-109. |
[4] | 管羽 付烨 翁云宣. 生物降解聚酯降解性能调控研究进展[J]. , 2023, 37(3): 103-112. |
[5] | 金清平, 刘运蝶. 纤维增强复合材料约束混凝土柱耐久性研究进展[J]. 中国塑料, 2023, 37(2): 121-128. |
[6] | 董竞辉, 桑晓明, 陈祯, 尹伟浩, 姜骞, 陈兴刚. 短切碳纤维对聚苯腈/碳纤维复合材料性能的影响[J]. 中国塑料, 2023, 37(2): 31-37. |
[7] | 李传敏, 杨建军, 李洋, 王洛唯. PDMS/SiC功能梯度复合材料3D打印主动混合喷头结构设计与工艺参数优化[J]. 中国塑料, 2023, 37(2): 71-76. |
[8] | 沈海娟, 李承高, 郭瑞, 辛美音, 黄翔宇, 张中慧, 咸贵军. 碳⁃玻璃纤维增强复合材料混杂杆体的锚固性能研究[J]. 中国塑料, 2023, 37(10): 15-23. |
[9] | 焦锐敏, 何小芳, 董青松, 王林, 曹新鑫. 共改性煤粉增强丁苯橡胶的硫化、力学和热稳定性能研究[J]. 中国塑料, 2023, 37(1): 46-53. |
[10] | 刘昊育, 辛菲, 杜家盈, 樊晓玲. 无卤阻燃聚酯复合材料研究进展[J]. 中国塑料, 2023, 37(1): 133-143. |
[11] | 贾明印, 董贤文, 王佳明, 陈轲. 浸渍方式对纤维增强聚酰胺6复合材料真空袋压成型工艺及性能的影响[J]. 中国塑料, 2022, 36(9): 1-6. |
[12] | 张林, 夏章川, 何亚东, 信春玲, 王瑞雪, 任峰. 等离子体射流载气流量大小对玻璃纤维改性效果影响的研究[J]. 中国塑料, 2022, 36(9): 7-15. |
[13] | 焦志伟, 王克琛, 张杨, 杨卫民. 基于碳纳米涂层沉积滑石粉与炭黑协同填充PVC/ABS复合材料的性能研究[J]. 中国塑料, 2022, 36(8): 10-15. |
[14] | 喻九阳, 王众浩, 陈琦, 夏亚忠. 基于阀体制造的先进树脂基复合材料性能研究[J]. 中国塑料, 2022, 36(8): 16-22. |
[15] | 张陶忠, 陈晓龙, 郝晓宇, 于福家. 滑石、CaCO3、BaSO4填充PP复合材料力学性能及界面相互作用对比[J]. 中国塑料, 2022, 36(8): 36-41. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||