
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (11): 130-136.DOI: 10.19491/j.issn.1001-9278.2024.11.022
• 综述 • 上一篇
收稿日期:
2024-01-29
出版日期:
2024-11-26
发布日期:
2024-11-21
通讯作者:
赵彪(1992—),男,副教授,从事圆偏振发光材料与器件,手性高分子,生物基聚酰胺等研究,zhaobiao@mail.buct.edu.cn作者简介:
张露荣(2000—),男,从事聚酰胺共聚阻燃改性研究,19863752320@163.com
ZHANG Lurong1(), HU Qing2, ZHAO Biao1(
), PAN Kai1(
)
Received:
2024-01-29
Online:
2024-11-26
Published:
2024-11-21
Contact:
ZHAO Biao, PAN Kai
E-mail:19863752320@163.com;zhaobiao@mail.buct.edu.cn;pankai@mail.buct.edu.cn
摘要:
聚酰胺是用量最大的工程塑料,综合性能优异,但其阻燃性能不高,需要进行阻燃改性才能拓宽其应用领域。本文综述了共聚阻燃聚酰胺的研究进展,详细介绍了用于共聚阻燃聚酰胺改性的反应型阻燃剂分子结构、阻燃机理和阻燃性能。最后,对共聚阻燃聚酰胺领域存在的问题和发展前景进行了展望。
中图分类号:
张露荣, 胡清, 赵彪, 潘凯. 共聚阻燃聚酰胺研究进展[J]. 中国塑料, 2024, 38(11): 130-136.
ZHANG Lurong, HU Qing, ZHAO Biao, PAN Kai. Research progress in flame⁃retardant modification of polyamide copolymers[J]. China Plastics, 2024, 38(11): 130-136.
阻燃剂 | PA种类 | 添加量/% | LOI/% | 性能 |
---|---|---|---|---|
DDP | PA6[ | 4 | 28.0 | UL94:V⁃0; EB:400 %; TS:20 MPa |
PA66[ | 5 | 33.2 | UL94:V⁃0; TS:58 MPa; EB: 37 % | |
PA66[ | 8 | 29.5 | UL94:V⁃0; TS: 50 MPa;EB: 降低了30 % | |
PA56[ | 4 | 28.0 | UL94:V⁃0; TS:70 MPa; EB: 35 % | |
PA66[ | 5.5 | 32.9 | UL94:V⁃0;断裂韧性从4.51 cN/dtex降至2.82 cN/dtex | |
DPDPO | PA6[ | 5 | 31.7 | UL94:V⁃0; TS:77降至58 MPa;EB:90 %降至45 % |
CEPPA | PA1210[ | 7 | 30.2 | UL94:V⁃0; TS: 38.62 MPa;EB: 55 % |
PA56[ | 4.6 | 28.4 | UL94:V⁃0; THR:下降20 % | |
CPPOA | PA6[ | 6 | 27.2 | UL94:V⁃0; TS:70 MPa;IS:5.6 kJ/m |
TPO | PA66[ | — | — | 热降解温度提高 |
NENP | PA66[ | 5 | 28.0 | UL94:V⁃0; TS:55 MPa;良好的热稳定性 |
PEC | PA6[ | 5 | 28.0 | UL94:V⁃0; 力学强度提高39 %;介电常数4.0降低至3.4;氢键密度不受影响,提高了耐热性 |
阻燃剂 | PA种类 | 添加量/% | LOI/% | 性能 |
---|---|---|---|---|
DDP | PA6[ | 4 | 28.0 | UL94:V⁃0; EB:400 %; TS:20 MPa |
PA66[ | 5 | 33.2 | UL94:V⁃0; TS:58 MPa; EB: 37 % | |
PA66[ | 8 | 29.5 | UL94:V⁃0; TS: 50 MPa;EB: 降低了30 % | |
PA56[ | 4 | 28.0 | UL94:V⁃0; TS:70 MPa; EB: 35 % | |
PA66[ | 5.5 | 32.9 | UL94:V⁃0;断裂韧性从4.51 cN/dtex降至2.82 cN/dtex | |
DPDPO | PA6[ | 5 | 31.7 | UL94:V⁃0; TS:77降至58 MPa;EB:90 %降至45 % |
CEPPA | PA1210[ | 7 | 30.2 | UL94:V⁃0; TS: 38.62 MPa;EB: 55 % |
PA56[ | 4.6 | 28.4 | UL94:V⁃0; THR:下降20 % | |
CPPOA | PA6[ | 6 | 27.2 | UL94:V⁃0; TS:70 MPa;IS:5.6 kJ/m |
TPO | PA66[ | — | — | 热降解温度提高 |
NENP | PA66[ | 5 | 28.0 | UL94:V⁃0; TS:55 MPa;良好的热稳定性 |
PEC | PA6[ | 5 | 28.0 | UL94:V⁃0; 力学强度提高39 %;介电常数4.0降低至3.4;氢键密度不受影响,提高了耐热性 |
阻燃剂 | PA种类 | 添加量/% | LOI/% | 性能表现 |
---|---|---|---|---|
MCA | PA6[ | 8 | 27 | UL94:V⁃0; 优异的阳离子染色性能 |
PA6[ | 7 | 35 | UL94:V⁃0; TS:73.1 MPa;BS:64.1 MPa;燃烧过程表现出低黏度 | |
PDB | PA1010[ | 6 | 33 | UL94:V⁃0; 对结晶过程,速率做出分析;PBD的引入增加PA1010的刚性,Tg升高。 |
阻燃剂 | PA种类 | 添加量/% | LOI/% | 性能表现 |
---|---|---|---|---|
MCA | PA6[ | 8 | 27 | UL94:V⁃0; 优异的阳离子染色性能 |
PA6[ | 7 | 35 | UL94:V⁃0; TS:73.1 MPa;BS:64.1 MPa;燃烧过程表现出低黏度 | |
PDB | PA1010[ | 6 | 33 | UL94:V⁃0; 对结晶过程,速率做出分析;PBD的引入增加PA1010的刚性,Tg升高。 |
阻燃剂 | PA种类 | 添加量/% | LOI/% | 性能 |
---|---|---|---|---|
PDDDS | PA66[ | 2 | 31.6 | UL94:V⁃0; PHRR和THR:降低47.0 %和45.7 %,PSPR (65.1 %)和TSP (36.3 %);ST:降低10 MPa; EB:下降至7 % |
TRFR | PA66[ | 3 | 29.0 | UL94:V⁃0 |
MSDS | PA6[ | 3 | 32.7 | UL94:V⁃0; TS:58 MPa,EB: 37 % |
阻燃剂 | PA种类 | 添加量/% | LOI/% | 性能 |
---|---|---|---|---|
PDDDS | PA66[ | 2 | 31.6 | UL94:V⁃0; PHRR和THR:降低47.0 %和45.7 %,PSPR (65.1 %)和TSP (36.3 %);ST:降低10 MPa; EB:下降至7 % |
TRFR | PA66[ | 3 | 29.0 | UL94:V⁃0 |
MSDS | PA6[ | 3 | 32.7 | UL94:V⁃0; TS:58 MPa,EB: 37 % |
阻燃剂 | PA种类 | 添加量/% | LOI/% | 性能 |
---|---|---|---|---|
PDPS | PA6[ | 3 | 28.3 | UL94:V⁃0 |
偶氮苯⁃EG | PA6[ | 15 | 28.2 | UL94:V⁃0; TS:41.9 MPa; EB: 36.6 % |
D⁃吡喃葡萄糖 | PA6[ | 2 | 29.4 | UL94:V⁃0 |
FDA | 脂肪及芳香族PA[ | 6 | 28.0 | UL94:V⁃0;T10 %:417~489 ℃,在600 ℃的残炭率为43 %~72 %。 |
阻燃剂 | PA种类 | 添加量/% | LOI/% | 性能 |
---|---|---|---|---|
PDPS | PA6[ | 3 | 28.3 | UL94:V⁃0 |
偶氮苯⁃EG | PA6[ | 15 | 28.2 | UL94:V⁃0; TS:41.9 MPa; EB: 36.6 % |
D⁃吡喃葡萄糖 | PA6[ | 2 | 29.4 | UL94:V⁃0 |
FDA | 脂肪及芳香族PA[ | 6 | 28.0 | UL94:V⁃0;T10 %:417~489 ℃,在600 ℃的残炭率为43 %~72 %。 |
1 | Oliver⁃Ortega H, Llop M F, Espinach F X, et al. Study of the flexural modulus of lignocellulosic fibers reinforced bio⁃based polyamide11 green composites[J]. Composites Part B: Engineering, 2018, 152: 126⁃132. |
2 | Yu Xiaolei, Wang Xin, Zhang Zhen, et al. High⁃performance fully bio⁃based poly (lactic acid)/polyamide11 (PLA/PA11) blends by reactive blending with multi⁃functionalized epoxy[J]. Polymer Testing, 2019, 78: 105980. |
3 | Luo Dian, Duan Wenfeng, Liu Yuan, et al. Melamine cyanurate surface treated by nylon of low molecular weight to prepare flame‐retardant polyamide 66 with high flowability[J]. Fire and Materials, 2019, 43(3): 323⁃331. |
4 | Schneider Kevin, Wudy Katrin, Drummer Dietmar. Flame⁃retardant polyamide powder for laser sintering: Powder characterization, processing behavior and component properties[J]. Polymers, 2020, 12(8): 1697. |
5 | Gao Jing, Huang Weijiang, He Wentao, et al. Superior flame retardancy of glass fiber⁃reinforced polyamide 6T composites by synergism between DOPO⁃based derivative and carbon nanotube[J]. Journal of Thermal Analysis and Calorimetry, 2022: 1⁃10. |
6 | Xu Kai, Tian Xing, Cao Ying, et al. Suppression of smoldering of calcium alginate flame⁃retardant paper by flame⁃retardant polyamide-66[J]. Polymers, 2021, 13(3): 430. |
7 | Xu Bo, Ma Wen, Shao Lushan, et al. Enhancement of an organic⁃metallic hybrid charring agent on flame retardancy of ethylene⁃vinyl acetate copolymer[J]. Royal Society Open Science, 2019, 6(3): 181413. |
8 | Malkappa Kuruma, Bandyopadhyay Jayita, Ray Suprakas Sinha. Design of poly(cyclotriphosphazene)⁃functionalized zirconium phosphate nanoplatelets to simultaneously enhance the dynamic mechanical and flame retardancy properties of polyamide 6[J]. ACS Omega, 2020, 5(23): 13 867‐13 877. |
9 | Mohammad Ziaur Rahman, Wang Xin, Song Lei, et al. A novel green phosphorus⁃containing flame retardant finishing on polysaccharide⁃modified polyamide 66 fabric for improving hydrophilicity and durability[J]. International Journal of Biological Macromolecules, 2023, 239: 124252. |
10 | Chen Xingdong, Lan Wei, Dou Wei. Polystyrene nanospheres coated red phosphorus flame retardant for polyamide 66[J]. Journal of Applied Polymer Science, 2022, 139(32): e52772. |
11 | Xu Bo, Wu Xiao, Ma Wen, et al. Synthesis and characterization of a novel organic⁃inorganic hybrid char⁃forming agent and its flame⁃retardant application in polypropylene composites[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 231⁃242. |
12 | Di Youbo, Wu Xing, Zhao Zhou, et al. Experimental investigation of mechanical, thermal, and flame‐retardant property of polyamide 6/phenoxyphosphazene fibers[J]. Journal of Applied Polymer Science,2020,137(32): 1⁃9. |
13 | Venoor Varun, Jay Hoon Park, Kazmer David, et al. Understanding the effect of water in polyamides: a review[J]. Polymer Reviews, 2021, 61(3): 598⁃645. |
14 | Guo Shangzhen, Xu Jiaqi, Ni Xiuyuan. Synthesis, structures, and properties of a new pentaerythritol⁃derived flame retardant used in polyamide 66[J]. ACS Omega, 2021, 6(19): 12 887⁃12 897. |
15 | He Feng Ming, Liu Bo Wen, Chen Li, et al. Novel polyamide 6 composites based on Schiff⁃base containing phosphonate oligomer: High flame retardancy, great processability and mechanical property[J]. Composites Part A: Applied Science and Manufacturing, 2021, 146: 106423. |
16 | Wang Wengui, Wang Fan, Li Heng, et al. Synthesis of phosphorus‐nitrogen hybrid flame retardant and investigation of its efficient flame‐retardant behavior in PA6/PA66[J]. Journal of Applied Polymer Science, 2023, 140(8): e53536. |
17 | Seo Jiho, Takahashi Hideaki, Nazari Behzad, et al. Isothermal flow⁃induced crystallization of polyamide 66 melts[J]. Macromolecules, 2018, 51(11): 4 269⁃4 279. |
18 | Zheng Tao, Wang Wengui, Liu Yaochi. A novel phosphorus‐nitrogen flame retardant for improving the flame retardancy of polyamide 6:preparation,properties,and flame retardancy mechanism[J]. Polymers for Advanced Technologies,2021, 32(6): 2 508‐2 516. |
19 | Hu Xin, Yang Hongyu, Jiang Yuping, et al. Facile synthesis of a novel transparent hyperbranched phosphorous/nitrogen⁃containing flame retardant and its application in reducing the fire hazard of epoxy resin[J]. Journal of Hazardous Materials, 2019, 379: 120793. |
20 | Lu Peng, Zhao Ze⁃Yong, Xu Bo⁃Ren, et al. A novel inherently flame⁃retardant thermoplastic polyamide elastomer[J]. Chemical Engineering Journal, 2020, 379: 122278. |
21 | Li Yuanyuan, Liu Ke, Zhang Jidong, et al. Preparation and characterizations of inherent flame retarded polyamide 66 containing the phosphorus linking pendent group[J]. Polymers for Advanced Technologies, 2018, 29(2): 951⁃960. |
22 | Zhang Shengming, Fan Xuesong, Xu Chaochen, et al. An inherently flame⁃retardant polyamide 6 containing a phosphorus group prepared by transesterification polymerization[J]. Polymer, 2020, 207: 122890. |
23 | Zhao Shikun, Chen Xiangyang, Zhou Yang, et al. Molecular design of reactive flame retardant for preparing biobased flame retardant polyamide 56[J]. Polymer Degradation and Stability, 2023, 207: 110212. |
24 | Li Yuan Yuan, Liu Ke, Xiao Ru, et al. Preparation and characterizations of flame retardant polyamide 66 fiber[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2017, 213(1): 012040. |
25 | Liu Ke, Li Yuanyuan, Tao Lei, et al. Synthesis and characterization of inherently flame retardant polyamide 6 based on a phosphine oxide derivative[J]. Polymer Degradation and Stability, 2019, 163: 151⁃160. |
26 | Qin Lizheng, Zhou Yang, Gong Shun, et al. Synthesis and characterization of a new copolymer consisting of polyamide 1210 and reactive phosphorus⁃ nitrogen flame⁃retardant[J]. Macromolecular Rapid Communications, 2023, 44(3): 2200644. |
27 | Yang Tingting, Gao Yuanbo, Liu Xiucai, et al. Flame⁃retardant polyamide 56 with high fire safety and good thermal performance[J]. Polymers for Advanced Technologies, 2022, 33(9): 2 807⁃2 819. |
28 | Zhang Jingnan, Lian Siming, He Yifan, et al. Intrinsically flame⁃retardant polyamide 66 with high flame retardancy and mechanical properties[J]. RSC advances, 2021, 11(1): 433⁃441. |
29 | Yang Xiaofeng, Li Qiaoling, Chen ZhiPing, et al. Mechanism studies of thermolysis process in copolyamide 66 containing triaryl phosphine oxide[J]. Journal of Thermal Analysis and Calorimetry, 2013, 112: 567⁃571. |
30 | Wenyan Lyu, Cui Yihua, Zhang Xujie, et al. Synthesis, thermal stability, and flame retardancy of PA66, treated with dichlorophenylphsophine derivatives[J]. Designed Monomers and Polymers, 2016, 19(5): 420⁃428. |
31 | Jiang Min, Liu Bo⁃Wen, He Feng⁃Ming, et al. High⁃performance flame⁃retardant aliphatic polyamide via enhanced chain entanglement[J]. Chemical Engineering Journal, 2023, 455: 140637. |
32 | Fu Yifan, Teng Yun, Yu Guomin, et al. Synthesis and structure properties of flame retardant and cationic dyeable polyamide 6 modified with 5⁃sulfoisophthalic acid sodium and melamine cyanurate[J]. Fibers and Polymers, 2018, 19: 1 363⁃1 372. |
33 | Wu Zhi Yong, Xu Wei, Xia Jin Kui, et al. Flame retardant polyamide 6 by in situ polymerization of ɛ⁃caprolactam in the presence of melamine derivatives[J]. Chinese Chemical Letters, 2008, 19(2): 241⁃244. |
34 | Tang Ya⁃Ling, Zheng Guan⁃Qi, Lin Yu⁃Xin, et al. Bio⁃based long⁃chain aliphatic polyamide with intrinsic flame retardancy and great overall properties[J]. Polymer Degradation and Stability, 2023, 214: 110416. |
35 | Wu Yanpeng, Yang Tonghui, Cheng Yongchang, et al. Synthesis phosphorus⁃sulfur reactive flame retardant for polyamide 66 with high flame retardant efficiency and low smoke[J]. Polymer Degradation and Stability, 2023, 214: 110378. |
36 | Fu Hao, Cui Yihua, Lv Jipeng. Fire retardant mechanism of PA66 modified by a “trinity” reactive flame retardant[J]. Journal of Applied Polymer Science, 2020, 137(1): 47488. |
37 | Fan Shuo, Yuan Ruchao, Wu Dequn, et al. Silicon/nitrogen synergistically reinforced flame⁃retardant PA6 nanocomposites with simultaneously improved anti⁃dripping and mechanical properties[J]. RSC Advances, 2019, 9(14): 7 620⁃7 628. |
38 | Fan Shuo, Zhu Chenchen, Wu Dequn, et al. Silicon⁃containing inherent flame⁃retardant polyamide 6 with anti⁃dripping via introducing ethylene glycol as the chain⁃linker and charring agent[J]. Polymer Degradation and Stability, 2020, 173: 109080. |
39 | Fan Shuo, Xiao Yao, Huang Jiemei, et al. Facile synthesis of azobenzene⁃containing polyamide 6 with low melting point and good anti⁃dripping performance[J]. Materials Today Communications, 2022, 31: 103859. |
40 | Zhai Gongxun, Li Lili, Xiang Hengxue, et al. Fascinating flame resistance of polycaprolactam copolymer containing d⁃glucopyranose for melt⁃spun flame retardant fibers[J]. Polymer Engineering & Science, 2022, 62(10): 3 218⁃3 228. |
41 | Shahram Mehdipour⁃Ataei, Samal Babanzadeh. New types of heat⁃resistant, flame⁃retardant ferrocene⁃based polyamides with improved solubility[J]. Reactive and Functional Polymers, 2007, 67(10): 883⁃892. |
[1] | 张学敏, 翟丽珍, 李厚补, 齐国权, 黄尚彬, 张冬娜, 杨志锋, 张晓宇. IV型储氢气瓶内衬材料聚酰胺6氢渗透行为的分子模拟研究[J]. 中国塑料, 2024, 38(8): 62-68. |
[2] | 刘莹, 孙昊, 杨勇, 姜开宇, 于同敏, 马赛, 祝铁丽. 超声振动对玻璃纤维增强聚酰胺6注塑制件力学性能的影响[J]. 中国塑料, 2024, 38(7): 9-14. |
[3] | 陈平, 路丹, 卢光明, 袁楚, 虞瑞雷. 聚酰胺材料霉致失效机理研究[J]. 中国塑料, 2024, 38(6): 98-104. |
[4] | 张正, 李方全, 李杰, 李长金, 郭敏, 王颖. 聚酰胺在医用卫生材料中的应用及研究进展[J]. 中国塑料, 2024, 38(5): 113-119. |
[5] | 张之琪, 王向东, 刘海明, 陈士宏. 聚酰胺弹性体对生物基聚酰胺56和聚酰胺66共混物的增韧改性及其发泡行为研究[J]. 中国塑料, 2024, 38(5): 55-60. |
[6] | 许准, 贾梦, 山颢, 许博. 呋喃基磷酰胺类阻燃剂的合成及其在阻燃PA6中的应用[J]. 中国塑料, 2024, 38(11): 104-113. |
[7] | 孙乙博, 刘亚宁, 芦浩凡, 陈士宏, 王向东, 武丽丽. PA66扩链改性及其超临界CO2微孔发泡行为研究[J]. 中国塑料, 2023, 37(12): 41-46. |
[8] | 赵微微, 张勇, 刘志, 张彬, 高健. 铁路废弃聚酰胺部件回收再生利用[J]. 中国塑料, 2023, 37(1): 106-111. |
[9] | 贾明印, 董贤文, 王佳明, 陈轲. 浸渍方式对纤维增强聚酰胺6复合材料真空袋压成型工艺及性能的影响[J]. 中国塑料, 2022, 36(9): 1-6. |
[10] | 董玥, 董霄, 朱德兆, 杨延翔, 罗琛, 李阳, 李锦山. 聚酰亚胺发展概况与应用展望[J]. 中国塑料, 2022, 36(9): 85-95. |
[11] | 陈佰全, 郑友明, 田际波, 张磊, 王金松, 林夏洁, 段亚鹏. 高含量玻璃纤维增强阻燃聚酰胺材料的制备与性能[J]. 中国塑料, 2022, 36(8): 42-48. |
[12] | 魏思淼, 邵路山, 许准, 刘艳婷, 赵思衡, 许博. 次磷酸盐⁃环四硅氧烷双基化合物复配二乙基次磷酸铝对PA6的阻燃性能研究[J]. 中国塑料, 2022, 36(7): 129-135. |
[13] | 王金业, 唐博虎, 杨立宁, 谢猛, 郭泽朝, 杨光. PA12试件多射流熔融成型工艺研究[J]. 中国塑料, 2022, 36(6): 81-86. |
[14] | 陈胜, 梁颖超, 吴方娟, 方辉, 范新凤, 陈晖, 王永刚. 聚酰胺6/双向经编玻璃纤维复合材料的制备及其界面改性研究[J]. 中国塑料, 2022, 36(5): 24-28. |
[15] | 许荣霞, 魏刚, 魏莉岚, 吴洁萃, 蒋雨江. Nano⁃SiO2及PA6复合改性PE⁃UHMW的摩擦磨损性能研究[J]. 中国塑料, 2022, 36(4): 47-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||