中国塑料 ›› 2025, Vol. 39 ›› Issue (10): 76-84.DOI: 10.19491/j.issn.1001-9278.2025.10.013

• 加工与应用 • 上一篇    下一篇

无支撑法熔融沉积成型C型薄壁结构的力学性能研究

关天民1, 李新1, 郭泽方2, 吴贯英3, 翟贇1()   

  1. 1.大连交通大学机械工程学院,大连 116021
    2.大连交通大学詹天佑学院,大连 116021
    3.大连小松雄连机械制造有限公司,大连 116199
  • 收稿日期:2024-10-28 出版日期:2025-10-26 发布日期:2025-10-21
  • 通讯作者: 翟贇,讲师,研究方向为增材制造技术,yunzhai5@vip.163.com
    E-mail:yunzhai5@vip.163.com

Tensile behavior of C⁃shape thin⁃walled structural parts fabricated by unsupported fused deposition modeling.

GUAN Tianmin1, LI Xin1, GUO Zefang2, WU Guanying3, ZHAI Yun1()   

  1. 1.School of Mechanical Engineering,Dalian Jiaotong University,Dalian 116021,China
    2.Zhantianyou College,Dalian Jiaotong University,Dalian 116021,China
    3.Komatsu Xionglian Machinery Manufacturing Co,Ltd,Dalian,116199,China
  • Received:2024-10-28 Online:2025-10-26 Published:2025-10-21
  • Contact: ZHAI Yun E-mail:yunzhai5@vip.163.com

摘要:

研究了以无支撑熔融沉积成型(FDM)技术成型的塑料薄壁结构的各种力学性能。针对C型薄壁结构,从曲面几何形状、薄壁结构厚度和材料等本征属性出发,探究以熔融沉积工艺,无支撑的方法,成型C型薄壁结构的力学性能与其结构之间的关系。采用有限元仿真和静态拉伸力学实验分析了丙烯腈⁃丁二烯⁃苯乙烯共聚物(ABS)和聚碳酸酯(PC)两种材料薄壁结构的力学性能与受力表征变化。综合正交试验,断口形貌分析,三因素方差分析等方法探索了不同本征属性C型薄壁结构的结构弹性模量,失效性质以及应力分布。结果表明,最小允许无支撑打印角度为16.53 °。在内凹、外凸、直体3种结构中,内凹结构拥有最高的结构弹性模量。在厚度上则体现为5 mm厚度最优,3 mm次之,4 mm最小。此外,结构的斜率不会对结构弹性模量产生影响,不同水平高度的结构弹性模量也因其旋转半径不同引发了差异性,使得直体和外凸结构的断裂发生在旋转半径较小处,而内凹结构的断裂发生在旋转半径较大处。本研究为面向无支撑熔融沉积工艺成型的薄壁结构设计提供了参考依据。

关键词: 熔融沉积工艺, 力学性能, 薄壁结构

Abstract:

This study investigates the tensile behavior of C⁃shaped thin⁃walled structural parts fabricated via unsupported fused deposition modeling (FDM). Combining finite element simulation with static tensile testing of ABS and PC specimens, the influence of intrinsic structures on mechanical properties, stress distribution, and failure mechanisms was systematically analyzed. An orthogonal experimental design, fracture morphology analysis, and three⁃factor ANOVA were employed to evaluate the effects of geometry. Key findings established a minimum allowable unsupported printing angle of 16.53 °. Among the geometries tested, concave structures exhibited the highest elastic modulus. An optimal wall thickness of 5 mm was identified, outperforming 3⁃ and 4⁃mm configurations. While the slope of the structure had no significant effect on the elastic modulus, the height (and consequently the rotation radius) was a critical factor. This difference in rotation radius dictated the failure location: fractures initiated at smaller radii in straight and convex structures, but at larger radii in concave structures. This study provides crucial design guidelines for optimizing the mechanical performance of unsupported FDM thin⁃walled structures.

Key words: fused deposition modeling, mechanical properties, thin?walled structure

中图分类号: