
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2025, Vol. 39 ›› Issue (4): 52-58.DOI: 10.19491/j.issn.1001-9278.2025.04.010
杨帆, 候梦宗, 宋丽莎, 胡润, 马瑜浩, 刘强, 张宏()
收稿日期:
2024-05-15
出版日期:
2025-04-26
发布日期:
2025-04-23
通讯作者:
张宏(1973—),男,教授,研究领域功能高分子材料,gszhangh@126.com基金资助:
YANG Fan, HOU Mengzong, SONG Lisha, HU Run, MA Yuhao, LIU Qiang, ZHANG Hong()
Received:
2024-05-15
Online:
2025-04-26
Published:
2025-04-23
Contact:
ZHANG Hong
E-mail:gszhangh@126.com
摘要:
塑料产品破碎、风化、老化等途径产生的微塑料(MPs,<5 mm)和纳米塑料(NPs,<1 μm)逐渐在土壤中积累并且由于其难降解的特性引起了广泛的关注。尽管已有报道MP/NPs与植物在植物⁃土壤关系中的相互作用,缺乏对这一新兴领域知识状况的全面综述,阻碍了这一领域的持续发展。本综述旨在通过广泛总结农业中 MPs/NPs 的来源、研究技术、对土壤性质的影响以及在植物体内的积累来填补这一空白。本综述还介绍了MPs/NPs植物毒性的可能机制。
中图分类号:
杨帆, 候梦宗, 宋丽莎, 胡润, 马瑜浩, 刘强, 张宏. 微/纳米塑料在农业土壤中的趋势和影响[J]. 中国塑料, 2025, 39(4): 52-58.
YANG Fan, HOU Mengzong, SONG Lisha, HU Run, MA Yuhao, LIU Qiang, ZHANG Hong. Fate and effects of MPs/NPs in agricultural soils[J]. China Plastics, 2025, 39(4): 52-58.
方法 | 定性、定量 | MPs/NPs 的检测范围 | 优缺点 |
---|---|---|---|
肉眼观察 | 定量(数量、尺寸) | 尺寸不限 | 成本低,预处理复杂,主观性强且容易出现人为错误。 |
称重 | 定量(质量) | 尺寸不限 | 成本低,需要配合微天平等多个步骤(如:过滤、干燥),易受外界干扰。 |
浊度 | 定量(浓度) | 不适合低密度MPs/NPs | 使用方便,快速,测量范围广,易受其他颗粒的干扰,不适合低密度的M/NPs |
GC⁃MS | 定性(类型) | 尺寸不限 | 精度高,可获得的MPs/NPs的种类,需要结合热分析技术、破坏性方法,不能提供M/NPs的尺寸和数量,需要有资质的人员。 |
LC | 定性(类型) | 尺寸不限 | 精度高,可获得的M/np类型,需要与其他技术相结合,不能在M/np上提供尺寸和数量,需要有资质的人员。 |
FT⁃IR | 定性(类型) | ≥20 μm | 方法快速、无损,可获得MPs的特定光谱,不适合NPs,仪器昂贵,需要合格的人员。 |
Raman | 定性(类型) | ≥1 μm | 快速无损的方法,精密度高,对非极性官能团敏感,易受污染物(微生物和有机或无机物)影响,不适合NPs,需要有资质的人员。 |
SERS | 定性(类型) | ≥50 nm | 灵敏度高、分子特异性独特、不受复杂成分影响、横向分辨率低、重现性差。 |
SEM⁃EDX | 定量(数量、尺寸) | 尺寸不限 | 可以提供M/NPs的高分辨率图像,可以获得M/NPs的形貌和表面元素组成,成本高,有复杂的预处理步骤。 |
DLS | 定性(大小) | 1 nm~10 μm | 快速准确,适用于测定分子量和分子大小,主要适用于球形颗粒,对溶液温度和粘度变化敏感。 |
定量1H 核磁共振 | 定性(大小) | 尺寸不限 | 快速、高精度、易受有机物干扰,需要完全提取 MPs/NPs,不适用于复杂基质。 |
质子核磁共振 | 定量(浓度) | 尺寸不限 | 基体干扰小 需要将聚合物溶解在适当的溶剂中,价格昂贵。 |
方法 | 定性、定量 | MPs/NPs 的检测范围 | 优缺点 |
---|---|---|---|
肉眼观察 | 定量(数量、尺寸) | 尺寸不限 | 成本低,预处理复杂,主观性强且容易出现人为错误。 |
称重 | 定量(质量) | 尺寸不限 | 成本低,需要配合微天平等多个步骤(如:过滤、干燥),易受外界干扰。 |
浊度 | 定量(浓度) | 不适合低密度MPs/NPs | 使用方便,快速,测量范围广,易受其他颗粒的干扰,不适合低密度的M/NPs |
GC⁃MS | 定性(类型) | 尺寸不限 | 精度高,可获得的MPs/NPs的种类,需要结合热分析技术、破坏性方法,不能提供M/NPs的尺寸和数量,需要有资质的人员。 |
LC | 定性(类型) | 尺寸不限 | 精度高,可获得的M/np类型,需要与其他技术相结合,不能在M/np上提供尺寸和数量,需要有资质的人员。 |
FT⁃IR | 定性(类型) | ≥20 μm | 方法快速、无损,可获得MPs的特定光谱,不适合NPs,仪器昂贵,需要合格的人员。 |
Raman | 定性(类型) | ≥1 μm | 快速无损的方法,精密度高,对非极性官能团敏感,易受污染物(微生物和有机或无机物)影响,不适合NPs,需要有资质的人员。 |
SERS | 定性(类型) | ≥50 nm | 灵敏度高、分子特异性独特、不受复杂成分影响、横向分辨率低、重现性差。 |
SEM⁃EDX | 定量(数量、尺寸) | 尺寸不限 | 可以提供M/NPs的高分辨率图像,可以获得M/NPs的形貌和表面元素组成,成本高,有复杂的预处理步骤。 |
DLS | 定性(大小) | 1 nm~10 μm | 快速准确,适用于测定分子量和分子大小,主要适用于球形颗粒,对溶液温度和粘度变化敏感。 |
定量1H 核磁共振 | 定性(大小) | 尺寸不限 | 快速、高精度、易受有机物干扰,需要完全提取 MPs/NPs,不适用于复杂基质。 |
质子核磁共振 | 定量(浓度) | 尺寸不限 | 基体干扰小 需要将聚合物溶解在适当的溶剂中,价格昂贵。 |
1 | Junhao C, Ning Z, Aodong G, et al. Extraction and identification methods of microplastics and nanoplastics in agricultural soil: a review[J]. Journal of Environmental Management, 2021, 294: 112997. |
2 | Sharma S, Basu S, Shetti N P, et al. Microplastics in the environment: occurrence, perils, and eradication[J]. Chemical Engineering Journal, 2021, 408: 127317.. |
3 | Qiu Y, Zhou S, Zhang C, et al. Identification of potentially contaminated areas of soil microplastic based on machine learning: A case study in Taihu Lake region, China[J]. Science of The Total Environment, 2023, 877: 162891. |
4 | Rillig M C. Microplastic in terrestrial ecosystems and the soil?[J]. 2012,46(12):6 453⁃6 454. |
5 | Mahon A M, O’Connell B, Healy M G, et al. Microplastics in sewage sludge: effects of treatment[J]. Environmental Science & Technology, 2017, 51(2): 810⁃818. |
6 | Mao Y, Ai H, Chen Y, et al. Phytoplankton response to polystyrene microplastics: perspective from an entire growth period[J]. Chemosphere, 2018, 208: 59⁃68. |
7 | Alimi O S, Farner Budarz J, Hernandez L M, et al. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 2018, 52(4): 1 704⁃1 724. |
8 | Sharma V K, Ma X, Guo B, et al. Environmental factors⁃mediated behavior of microplastics and nanoplastics in water: a review[J]. Chemosphere, 2021, 271: 129597. |
9 | Jambeck J R, Geyer R, Wilcox C, et al. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223): 768⁃771. |
10 | Bradney L, Wijesekara H, Palansooriya K N, et al. Particulate plastics as a vector for toxic trace⁃element uptake by aquatic and terrestrial organisms and human health risk[J]. Environment International, 2019, 131: 104937. |
11 | Nizzetto L, Futter M, Langaas S. Are agricultural soils dumps for microplastics of urban origin?[J]. Environmental Science & Technology Es & T, 2016,50(20):10 777⁃10 779. |
12 | Conti G O, Ferrante M, Banni M, et al. Micro⁃and nano⁃plastics in edible fruit and vegetables. The first diet risks assessment for the general population[J]. Environmental Research, 2020, 187: 109677. |
13 | Babar I, Tingting Z, Weiqing Y, et al. Impacts of soil microplastics on crops:a review[J], Applied Soil Ecology, 2023, 181: 104 680. |
14 | Group C W.Assessment of agricultural plastics and their sustainability: A call for action[J].Chemical Weekly, 2022(38):67. |
15 | Sharma V K, Ma X, Lichtfouse E, et al. Nanoplastics are potentially more dangerous than microplastics[J]. Environmental Chemistry Letters, 2023, 21(4): 1 933⁃1 936. |
16 | Naqash N, Prakash S, Kapoor D, et al. Interaction of freshwater microplastics with biota and heavy metals: a review[J]. Environmental Chemistry Letters, 2020, 18(6): 1 813⁃1 824. |
17 | Auta H S, Emenike C U, Fauziah S H. Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions[J]. Environment international, 2017, 102: 165⁃176. |
18 | Zhang J, Gao D, Li Q, et al. Biodegradation of polyethylene microplastic particles by the fungus aspergillus flavus from the guts of wax moth Galleria mellonella[J]. Science of the Total Environment, 2020, 704: 135931. |
19 | Ren S Y, Kong S F, Ni H G. Contribution of mulch film to microplastics in agricultural soil and surface water in China[J]. Environmental Pollution, 2021, 291: 118227. |
20 | Ohtake Y, Kobayashi T, Asabe H, et al. Studies on biodegradation of LDPE⁃observation of LDPE films scattered in agricultural fields or in garden soil[J]. Polymer degradation and stability, 1998, 60(1): 79⁃84. |
21 | Duis K, Coors A. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects[J]. Environmental Sciences Europe, 2016, 28(1): 2. |
22 | Bayo J, Olmos S, López⁃Castellanos J. Microplastics in an urban wastewater treatment plant: The influence of physicochemical parameters and environmental factors[J]. Chemosphere, 2020, 238: 124593. |
23 | Qi R, Jones D L, Li Z, et al. Behavior of microplastics and plastic film residues in the soil environment: a critical review[J]. Science of the Total Environment, 2020, 703: 134722. |
24 | Cheng H, Hu Y, Reinhard M. Environmental and health impacts of artificial turf: a review[J]. Environmental science & technology, 2014, 48(4): 2 114⁃2 129. |
25 | Accinelli C, Abbas H K, Shier W T, et al. Degradation of microplastic seed film⁃coating fragments in soil[J]. Chemosphere, 2019, 226: 645⁃650. |
26 | Accinelli C, Abbas H K, Shier W T. A bioplastic⁃based seed coating improves seedling growth and reduces production of coated seed dust[J]. Journal of Crop Improvement, 2018, 32(3): 318⁃330. |
27 | Accinelli C, Abbas H K, Shier W T, et al. Degradation of microplastic seed film⁃coating fragments in soil[J]. Chemosphere, 2019, 226: 645⁃650. |
28 | Kole P J, Löhr A J, Van Belleghem F G A J, et al. Wear and tear of tyres: a stealthy source of microplastics in the environment[J]. International journal of environmental research and public health, 2017, 14(10): 1 265. |
29 | Essel R, Engel L, Carus M, et al. Sources of microplastics relevant to marine protection in Germany[J]. Texte, 2015, 64: 1 219⁃1 226. |
30 | Sorasan C, Edo C, González⁃Pleiter M, et al. Ageing and fragmentation of marine microplastics[J]. Science of The Total Environment, 2022, 827: 154438. |
31 | Alimi O S, Farner Budarz J, Hernandez L M, et al. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 2018, 52(4): 1 704⁃1 724. |
32 | Sait S T L, Sørensen L, Kubowicz S, et al. Microplastic fibres from synthetic textiles: Environmental degradation and additive chemical content[J]. Environmental Pollution, 2021, 268: 115745. |
33 | Boudarel H, Mathias J D, Blaysat B, et al. Towards standardized mechanical characterization of microbial biofilms: analysis and critical review[J]. npj Biofilms and Microbiomes, 2018, 4(1): 17. |
34 | Lozano Y M, Lehnert T, Linck L T, et al. Microplastic shape, polymer type, and concentration affect soil properties and plant biomass[J]. Frontiers in Plant Science, 2021, 12: 616645. |
35 | Gharahi N, Zamani⁃Ahmadmahmoodi R. Effect of plastic pollution in soil properties and growth of grass species in semi⁃arid regions: a laboratory experiment[J]. Environmental Science and Pollution Research, 2022, 29(39): 59 118⁃59 126. |
36 | Rillig M C, Lehmann A. Microplastic in terrestrial ecosystems[J]. Science, 2020, 368(6498): 1 430⁃1 431. |
37 | Liu H, Yang X, Liu G, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil[J]. Chemosphere, 2017, 185: 907⁃917. |
38 | Pignattelli S, Broccoli A, Renzi M. Physiological responses of garden cress (L. sativum) to different types of microplastics[J]. Science of the Total Environment, 2020, 727: 138609. |
39 | Boots B, Russell C W, Green D S. Effects of microplastics in soil ecosystems: above and below ground[J]. Environmental science & technology, 2019, 53(19): 11 496⁃11 506. |
40 | Wang F, Wang X, Song N. Polyethylene microplastics increase cadmium uptake in lettuce (Lactuca sativa L.) by altering the soil microenvironment[J]. Science of the Total Environment, 2021, 784: 147133. |
41 | Bosker T, Bouwman L J, Brun N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum[J]. Chemosphere, 2019, 226: 774⁃781. |
42 | Li Z, Li R, Li Q, et al. Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution[J]. Chemosphere, 2020, 255: 127041. |
43 | Sun X D, Yuan X Z, Jia Y, et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana[J]. Nature nanotechnology, 2020, 15(9): 755⁃760. |
44 | Carpita N, Sabularse D, Montezinos D, et al. Determination of the pore size of cell walls of living plant cells[J]. Science, 1979, 205(4411): 1 144⁃1 147. |
45 | Bandmann V, Müller J D, Köhler T, et al. Uptake of fluorescent nano beads into BY2⁃cells involves clathrin⁃dependent and clathrin⁃independent endocytosis[J]. FEBS letters, 2012, 586(20): 3 626⁃3 632. |
46 | Giorgetti L, Spanò C, Muccifora S, et al. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress[J]. Plant Physiology and Biochemistry, 2020, 149: 170⁃177. |
47 | Dong Y, Gao M, Qiu W, et al. Uptake of microplastics by carrots in presence of As (III): Combined toxic effects[J]. Journal of Hazardous Materials, 2021, 411: 125055. |
48 | Jiang X, Chen H, Liao Y, et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba[J]. Environmental Pollution, 2019, 250: 831⁃838. |
49 | Liu Q, Chen Z, Chen Y, et al. Microplastics and nanoplastics: emerging contaminants in food[J]. Journal of Agricultural and Food Chemistry, 2021, 69(36): 10 450⁃10 468. |
50 | Hanif M A, Ibrahim N, Dahalan F A, et al. Microplastics and nanoplastics: recent literature studies and patents on their removal from aqueous environment[J]. Science of The Total Environment, 2022, 810: 152115. |
51 | Dümichen E, Barthel A K, Braun U, et al. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method[J]. Water Research, 2015, 85: 451⁃457. |
52 | Liu Q, Chen Z, Chen Y, et al. Microplastics and nanoplastics: emerging contaminants in food[J]. Journal of Agricultural and Food Chemistry, 2021, 69(36): 10 450⁃10 468. |
53 | Fuller S, Gautam A. A procedure for measuring microplastics using pressurized fluid extraction[J]. Environmental science & technology, 2016, 50(11): 5 774⁃5 780. |
54 | Sung S J, Daiao Hu D X H, Wang QiLin W Q L, et al. Microplastics in wastewater treatment plants: detection, occurrence and removal[J].Water Research, 2019,152:21⁃37. |
55 | Dong Y, Gao M, Song Z, et al. Microplastic particles increase arsenic toxicity to rice seedlings[J]. Environmental Pollution, 2020, 259: 113892. |
56 | Dong Y, Gao M, Qiu W, et al. Uptake of microplastics by carrots in presence of As (III): Combined toxic effects[J]. Journal of Hazardous Materials, 2021, 411: 125055. |
57 | Abbasi S, Moore F, Keshavarzi B, et al. PET⁃microplastics as a vector for heavy metals in a simulated plant rhizosphere zone[J]. Science of the Total Environment, 2020, 744: 140984. |
58 | Dong Y, Gao M, Song Z, et al. Microplastic particles increase arsenic toxicity to rice seedlings[J]. Environmental Pollution, 2020, 259: 113892. |
59 | Abbasi S, Moore F, Keshavarzi B. PET⁃microplastics as a vector for polycyclic aromatic hydrocarbons in a simulated plant rhizosphere zone[J]. Environmental Technology & Innovation, 2021, 21: 101370. |
60 | Guo A, Pan C, Su X, et al. Combined effects of oxytetracycline and microplastic on wheat seedling growth and associated rhizosphere bacterial communities and soil metabolite profiles[J]. Environmental Pollution, 2022, 302: 119046. |
61 | Singh N, Khandelwal N, Tiwari E, et al. Interaction of metal oxide nanoparticles with microplastics: impact of weathering under riverine conditions[J]. Water Research, 2021, 189: 116622. |
62 | Sharma N, Kumar V, Maitra S S, et al. DBP biodegradation kinetics by Acinetobacter sp. 33F in pristine agricultural soil[J]. Environmental Technology & Innovation, 2021, 21: 101240. |
[1] | 杨帆 侯梦宗 宋丽莎 胡润 马瑜浩 刘强 张宏. 微/纳米塑料在农业土壤中的趋势和影响[J]. , 2025, 39(5): 52-58. |
[2] | 肖进男, 张珍明. 农田土壤中微塑料的来源、赋存特征及其潜在风险[J]. 中国塑料, 2024, 38(9): 137-144. |
[3] | 林良斌, 周为明, 薛珲, 钱庆荣, 杨松伟, 曹长林, 陈庆华. 基于光催化降解的微塑料污染治理研究进展[J]. 中国塑料, 2024, 38(12): 172-178. |
[4] | 蒲晨露, 李根. 食品接触材料中污染物分析技术的研究进展[J]. 中国塑料, 2023, 37(2): 113-120. |
[5] | 杨敏, 王莹, 陈蕾, 马惠芳, 闫桂焕, 王文语. 水中微塑料污染及转化去除的研究进展[J]. 中国塑料, 2023, 37(2): 90-100. |
[6] | 孙文潇, 杨帆, 侯梦宗, 贺丹丹, 吴慧, 刘强, 张宏. 环境中的微塑料污染及降解[J]. 中国塑料, 2023, 37(11): 117-126. |
[7] | 白水泉, 边佳诚, 王乐园, 杨家华, 邓亚峰. 水环境微塑料去除技术的研究进展[J]. 中国塑料, 2022, 36(8): 166-175. |
[8] | 郭雨文, 曾蓓, 高星, 王攀, 任连海. PET微塑料对污泥和厨余垃圾共消化的影响[J]. 中国塑料, 2022, 36(7): 51-60. |
[9] | 汤庆峰, 李琴梅, 王佳敏, 张裕祥, 高峡. 显微⁃傅里叶变换红外光谱鉴别分析微塑料[J]. 中国塑料, 2021, 35(8): 172-180. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||