
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (12): 172-178.DOI: 10.19491/j.issn.1001-9278.2024.12.026
• 综述 • 上一篇
林良斌1,2,3, 周为明1,2,3, 薛珲1,2,3, 钱庆荣1,2,3, 杨松伟1,2,3, 曹长林1,2,3(), 陈庆华1,2,3
收稿日期:
2024-01-28
出版日期:
2024-12-26
发布日期:
2024-12-25
通讯作者:
曹长林,男,副教授,从事聚合物材料的绿色加工、回收利用及产业应用,caochlin3@fjnu.edu.cn基金资助:
LIN Liangbin1,2,3, ZHOU Weiming1,2,3, XUE Hun1,2,3, QIAN Qingrong1,2,3, YANG Songwei1,2,3, CAO Changlin1,2,3(), CHEN Qinghua1,2,3
Received:
2024-01-28
Online:
2024-12-26
Published:
2024-12-25
Contact:
CAO Changlin
E-mail:caochlin3@fjnu.edu.cn
摘要:
综述了近年来光催化降解微塑料的前沿进展,包括微塑料光催化降解机理、催化剂的设计,探讨了评估光催化降解效率的重要参数及影响光催化降解效率的因素,从微塑料聚集态的角度剖析了现有降解效率低的原因。最后展望了该技术未来的研究方向。
中图分类号:
林良斌, 周为明, 薛珲, 钱庆荣, 杨松伟, 曹长林, 陈庆华. 基于光催化降解的微塑料污染治理研究进展[J]. 中国塑料, 2024, 38(12): 172-178.
LIN Liangbin, ZHOU Weiming, XUE Hun, QIAN Qingrong, YANG Songwei, CAO Changlin, CHEN Qinghua. Progress of microplastic pollution control research based on photocatalytic degradation[J]. China Plastics, 2024, 38(12): 172-178.
微塑料 | 光源 | 催化剂 | 降解率(质量 分数)/% | 产物 | 参考文献 |
---|---|---|---|---|---|
高密度聚乙烯(PE⁃HD) | 可见光 | C,N⁃TiO2 | 4.65 ±0.35 ~71.77±1.88 | - | [ |
蛋白质基N⁃TiO2 | [ | ||||
多孔N–TiO2 | [ | ||||
PET | 可见光 | MXene/ ZxC1⁃xS | - | 有机小分子化合物 | [ |
AM 1.5 | Bi2O3@N⁃TiO | 10.23±1.91 | 醛、酯、羧基 | [ | |
PE⁃LD | 可见光 | NiAl2O4 | 12.5 | 二氧化碳、水、甲烷 | [ |
ZnO 纳米棒 | - | 乙醇、甲烷 | [ | ||
Pt⁃ZnO | - | - | [ | ||
PMMA | 紫外光 | TiO2–P25 | - | - | [ |
PS | 紫外光 | TiO2纳米膜 | 23.50±1.02 ~98.4 | 二氧化碳,水 | [ |
阳极氧化的 TiO2 | [ | ||||
Au@Ni@TiO2 | [ | ||||
PP | 可见光 | ZnO NRs | 65 | 低毒性产物 | [ |
PA66 | 紫外光 | TiO2 | 97 | 有机副产物 | [ |
微塑料 | 光源 | 催化剂 | 降解率(质量 分数)/% | 产物 | 参考文献 |
---|---|---|---|---|---|
高密度聚乙烯(PE⁃HD) | 可见光 | C,N⁃TiO2 | 4.65 ±0.35 ~71.77±1.88 | - | [ |
蛋白质基N⁃TiO2 | [ | ||||
多孔N–TiO2 | [ | ||||
PET | 可见光 | MXene/ ZxC1⁃xS | - | 有机小分子化合物 | [ |
AM 1.5 | Bi2O3@N⁃TiO | 10.23±1.91 | 醛、酯、羧基 | [ | |
PE⁃LD | 可见光 | NiAl2O4 | 12.5 | 二氧化碳、水、甲烷 | [ |
ZnO 纳米棒 | - | 乙醇、甲烷 | [ | ||
Pt⁃ZnO | - | - | [ | ||
PMMA | 紫外光 | TiO2–P25 | - | - | [ |
PS | 紫外光 | TiO2纳米膜 | 23.50±1.02 ~98.4 | 二氧化碳,水 | [ |
阳极氧化的 TiO2 | [ | ||||
Au@Ni@TiO2 | [ | ||||
PP | 可见光 | ZnO NRs | 65 | 低毒性产物 | [ |
PA66 | 紫外光 | TiO2 | 97 | 有机副产物 | [ |
评价微塑料降解效率的参数 | 测量仪器 | 参考文献 |
---|---|---|
质量损失 | 电子天平 | [ |
颗粒尺寸及形貌 | 光学显微镜、扫描电子显微镜、透射电子显微镜等 | [ |
化学结构 | 傅里叶红外光谱仪、拉曼光谱等 | [ |
晶型 | X射线粉末衍射仪、差示扫描量热仪等 | [ |
中间产物 | 气相色谱⁃质谱联用仪等 | [ |
羰基指数(CI) | 傅里叶红外光谱等 | [ |
总有机碳(TOC) | 总有机碳分析仪等 | [ |
评价微塑料降解效率的参数 | 测量仪器 | 参考文献 |
---|---|---|
质量损失 | 电子天平 | [ |
颗粒尺寸及形貌 | 光学显微镜、扫描电子显微镜、透射电子显微镜等 | [ |
化学结构 | 傅里叶红外光谱仪、拉曼光谱等 | [ |
晶型 | X射线粉末衍射仪、差示扫描量热仪等 | [ |
中间产物 | 气相色谱⁃质谱联用仪等 | [ |
羰基指数(CI) | 傅里叶红外光谱等 | [ |
总有机碳(TOC) | 总有机碳分析仪等 | [ |
1 | Alimba C G, Faggio C. Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile[J]. Environmental toxicology and pharmacology, 2019, 68: 61⁃74. |
2 | Ivleva N P, Wiesheu A C, Niessner R. Microplastic in aquatic ecosystems[J]. Angewandte Chemie International Edition, 2017, 56(7): 1 720⁃1 739. |
3 | 韩书宇,付 英,张 游,等.城市污水中微塑料特性、检测及去除[J].工业用水与废水,2021,52(05):1⁃5. |
HAN S Y, FU Y, ZHANG Y, WEN J J. Characteristics, detection and removal of microplastics inurban sewage[J].Industral Water & Wastewater,2021,52(05):1⁃5. | |
4 | Horton A A, Walton A, Spurgeon D J, et al. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the total environment, 2017, 586: 127⁃141. |
5 | Du H, Xie Y, Wang J. Microplastic degradation methods and corresponding degradation mechanism: research status and future perspectives[J]. Journal of hazardous materials, 2021, 418: 126377(12) |
6 | Hartmann N B, Hüffer T, Thompson R C, et al. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris[J]. Environmental Science & Technology, 2019, 53(3): 1 039⁃1 047. |
7 | Napper I E, Bakir A, Rowland S J, et al. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics[J]. Marine pollution bulletin, 2015, 99(1/2): 178⁃185. |
8 | Kalčíková G, Alič B, Skalar T, et al. Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater[J]. Chemosphere, 2017, 188: 25⁃31. |
9 | Mishra A K, Singh J, Mishra P P. Microplastics in polar regions: an early warning to the world's pristine ecosystem[J]. Science of the Total Environment, 2021, 784: 147149. |
10 | Yang H, Zhu Z, Xie Y, et al. Comparison of the combined toxicity of polystyrene microplastics and different concentrations of cadmium in zebrafish[J]. Aquatic Toxicology, 2022, 250: 106259. |
11 | Deng Y, Zhang Y, Qiao R, et al. Evidence that microplastics aggravate the toxicity of organophosphorus flame retardants in mice (Mus musculus)[J]. Journal of hazardous materials, 2018, 357: 348⁃354. |
12 | 蔡咚玲,陶 静,张 琳,等.环境微塑料的生物危害及其技术防治策略[J].再生资源与循环经济,2023,16(03):29⁃33. |
CAI D L, TAO J, ZHANG L, et al. Biohazards and its control strategies in technology of microplastics in environment[J],Recyclable Resources and Circular Economy,2023,16(03):29⁃33. | |
13 | Du J, Zhou Q, Li H, et al. Environmental distribution, transport and ecotoxicity of microplastics: a review[J]. Journal of Applied Toxicology, 2021, 41(1): 52⁃64. |
14 | Chamas A, Moon H, Zheng J, et al. Degradation rates of plastics in the environment[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3 494⁃3 511. |
15 | Wang C, Zhao J, Xing B. Environmental source, fate, and toxicity of microplastics[J]. Journal of hazardous materials, 2021, 407: 124357. |
16 | 游慧敏,张 琳,曹长林,等.微塑料对水环境中亚甲基蓝的吸脱附行为研究[J].环境科学与技术,2021,44(10):98⁃106. |
YOU H M, ZHANG L, CAO C L, et al. Adsorption⁃desorption Behavior of Methylene Blue onto Microplasticsin Water Environment[J],Environmental Science & Technology,2021,44(10):98⁃106. | |
17 | Rillig M C, Bonkowski M. Microplastic and soil protists: a call for research[J]. Environmental Pollution, 2018, 241: 1 128⁃1 131. |
18 | Tofa T S, Kunjali K L, Paul S, et al. Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods[J]. Environmental Chemistry Letters, 2019, 17: 1 341⁃1 346. |
19 | Nabi I, Li K, Cheng H, et al. Complete photocatalytic mineralization of microplastic on TiO2 nanoparticle film[J]. Iscience, 2020, 23(7): 101326. |
20 | Uheida A, Mejía H G, Abdel⁃Rehim M, et al. Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system[J]. Journal of hazardous materials, 2021, 406: 124299. |
21 | Ali S S, Qazi I A, Arshad M, et al. Photocatalytic degradation of low density polyethylene (LDPE) films using titania nanotubes[J]. Environmental nanotechnology, monitoring & management, 2016, 5: 44⁃53. |
22 | Ariza⁃Tarazona M C, Villarreal⁃Chiu J F, Hernández⁃López J M, et al. Microplastic pollution reduction by a carbon and nitrogen⁃doped TiO2: Effect of pH and temperature in the photocatalytic degradation process[J]. Journal of hazardous materials, 2020, 395: 122632. |
23 | Ariza⁃Tarazona M C, Villarreal⁃Chiu J F, Barbieri V, et al. New strategy for microplastic degradation: Green photocatalysis using a protein⁃based porous N⁃TiO2 semiconductor[J]. Ceramics International, 2019, 45(7): 9 618⁃9 624. |
24 | Llorente⁃García B E, Hernández⁃López J M, Zaldívar⁃Cadena A A, et al. First insights into photocatalytic degradation of HDPE and LDPE microplastics by a mesoporous N–TiO2 coating: effect of size and shape of microplastics[J]. Coatings, 2020, 10(7): 658. |
25 | Cao B, Wan S, Wang Y, et al. Highly⁃efficient visible⁃light⁃driven photocatalytic H2 evolution integrated with microplastic degradation over MXene/ZnxCd1⁃xS photocatalyst[J]. Journal of Colloid and Interface Science, 2022, 605: 311⁃319. |
26 | Zhou D, Wang L, Zhang F, et al. Feasible Degradation of Polyethylene Terephthalate Fiber‐Based Microplastics in Alkaline Media with Bi2O3@ N‐TiO2 Z‐Scheme Photocatalytic System[J]. Advanced Sustainable Systems, 2022, 6(5): 2100516. |
27 | Venkataramana C, Botsa S M, Shyamala P, et al. Photocatalytic degradation of polyethylene plastics by NiAl2O4 spinels⁃synthesis and characterization[J]. Chemosphere, 2021, 265: 129021. |
28 | Tofa T S, Kunjali K L, Paul S, et al. Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods[J]. Environmental Chemistry Letters, 2019, 17: 1 341⁃1 346. |
29 | Domínguez⁃Jaimes L P, Cedillo⁃González E I, Luévano⁃Hipólito E, et al. Degradation of primary nanoplastics by photocatalysis using different anodized TiO2 structures[J]. Journal of hazardous materials, 2021, 413: 125452. |
30 | Wang L, Kaeppler A, Fischer D, et al. Photocatalytic TiO2 micromotors for removal of microplastics and suspended matter[J]. ACS applied materials & interfaces, 2019, 11(36): 32 937⁃32 944. |
31 | Lee J M, Busquets R, Choi I C, et al. Photocatalytic degradation of polyamide 66; evaluating the feasibility of photocatalysis as a microfibre⁃targeting technology[J]. Water, 2020, 12(12): 3 551. |
32 | Zhao Y, Zhang F, Zhang J, et al. Preparation of composite photocatalyst with tunable and self⁃indicating delayed onset of performance and its application in polyethylene degradation[J]. Applied Catalysis B: Environmental, 2021, 286: 119918. |
33 | Yuan J, Ma J, Sun Y, et al. Microbial degradation and other environmental aspects of microplastics/plastics[J]. Science of the Total Environment, 2020, 715: 136968. |
34 | Sanjayan C G, Jyothi M S, Balakrishna R G. Stabilization of CsPbBr3 quantum dots for photocatalysis, imaging and optical sensing in water and biological medium: a review[J]. Journal of Materials Chemistry C, 2022, 10(18): 6 935⁃6 956. |
35 | Takanabe K, Shahid S. Dehydrogenation of ethane to ethylene via radical pathways enhanced by alkali metal based catalyst in oxysteam condition[J]. AIChE Journal, 2017, 63(1): 105⁃110. |
36 | Hu C, Zhang L, Gong J. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting[J]. Energy & Environmental Science, 2019, 12(9): 2 620⁃2 645. |
37 | Luo H, Xiang Y, Tian T, et al. An AFM⁃IR study on surface properties of nano⁃TiO2 coated polyethylene (PE) thin film as influenced by photocatalytic aging process[J]. Science of The Total Environment, 2021, 757: 143900. |
38 | Shang J, Chai M, Zhu Y. Photocatalytic degradation of polystyrene plastic under fluorescent light[J]. Environmental science & technology, 2003, 37(19): 4 494⁃4 499. |
39 | Shang J, Chai M, Zhu Y. Solid⁃phase photocatalytic degradation of polystyrene plastic with TiO2 as photocatalyst[J]. Journal of Solid State Chemistry, 2003, 174(1): 104⁃110. |
40 | Chu S, Zhang B, Zhao X, et al. Photocatalytic conversion of plastic waste: from photodegradation to photosynthesis[J]. Advanced Energy Materials, 2022, 12(22): 2200435. |
41 | Fairbrother A, Hsueh H C, Kim J H, et al. Temperature and light intensity effects on photodegradation of high⁃density polyethylene[J]. Polymer Degradation and Stability, 2019, 165: 153⁃160. |
42 | Jiang R, Lu G, Yan Z, et al. Microplastic degradation by hydroxy⁃rich bismuth oxychloride[J]. Journal of hazardous materials, 2021, 405: 124247. |
43 | Vinu R, Madras G. Photocatalytic degradation of methyl methacrylate copolymers[J]. Polymer degradation and stability, 2008, 93(8): 1 440⁃1 449. |
44 | Wan Y, Wang H, Liu J, et al. Enhanced degradation of polyethylene terephthalate plastics by CdS/CeO2 heterojunction photocatalyst activated peroxymonosulfate[J]. Journal of hazardous materials, 2023, 452: 131375. |
45 | Jiao X, Hu Z, Wu Y, et al. Photoconverting polyethylene terephthalate into exclusive carbon dioxide by heterostructured NiO/Fe2O3 nanosheets under mild conditions[J]. Science China Materials, 2022, 65(4): 985⁃991. |
46 | Jiao X, Zheng K, Chen Q, et al. Photocatalytic conversion of waste plastics into C2 fuels under simulated natural environment conditions[J]. Angewandte Chemie International Edition, 2020, 59(36): 15 497⁃15 501. |
47 | Miranda M N, Sampaio M J, Tavares P B, et al. Aging assessment of microplastics (LDPE, PET and uPVC) under urban environment stressors[J]. Science of The Total Environment, 2021, 796: 148914. |
48 | Ding L, Mao R, Ma S, et al. High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants[J]. Water Research, 2020, 174: 115634. |
49 | Klein S, Dimzon I K, Eubeler J, et al. Analysis, occurrence, and degradation of microplastics in the aqueous environment[J]. The Handbook ofEnvironmental Chemistrv, 2018, 58: 51⁃67. |
50 | Liang W, Luo Y, Song S, et al. High photocatalytic degradation activity of polyethylene containing polyacrylamide grafted TiO2 [J]. Polymer degradation and stability, 2013, 98(9): 1 754⁃1 761. |
51 | Krehula L K, Katančić Z, Siročić A P, et al. Weathering of high⁃density polyethylene⁃wood plastic composites[J]. Journal of wood chemistry and technology, 2014, 34(1): 39⁃54. |
52 | Maulana D A, Ibadurrohman M,Slamet.Synthesis of Nano⁃Composite Ag/TiO2 for Polyethylene Microplastic Degradation Applications[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1011(1): 012054 |
[1] | 文麒霖, 贾雪华, 孙炎君, 牛思霁, 陈英红, 陈宁. 生物可降解塑料包装薄膜的制备及应用进展[J]. 中国塑料, 2024, 38(9): 112-122. |
[2] | 崔豹, 杨建军, 吴庆云, 吴明元, 张建安, 刘久逸. 聚乳酸复合材料共混改性研究及应用进展[J]. 中国塑料, 2024, 38(9): 129-136. |
[3] | 肖进男, 张珍明. 农田土壤中微塑料的来源、赋存特征及其潜在风险[J]. 中国塑料, 2024, 38(9): 137-144. |
[4] | 殷茂峰, 王晓珂, 孙国华, 张信, 李鹏鹏, 马劲松, 肖军, 侯连龙. 红外光谱快速检测生物降解聚酯的研究[J]. 中国塑料, 2024, 38(9): 94-100. |
[5] | 王兴国, 吕明福, 黄逸伦, 郭鹏, 高达利, 张师军. 聚乙醇酸高温降解性能研究及其调控方法[J]. 中国塑料, 2024, 38(8): 13-19. |
[6] | 何和智, 黄宗海, 赖文, 熊华威. PLA/PBAT/CB防静电包装材料的制备及其性能研究[J]. 中国塑料, 2024, 38(7): 1-8. |
[7] | 王珅, 刘宣伯, 张艳芳, 贾雪飞, 祝桂香, 张龙贵. 生物可降解无纺布材料研究进展[J]. 中国塑料, 2024, 38(7): 86-92. |
[8] | 骆佳伟, 周炳, 王洪学, 贾钦. 扩链条件对聚丁二酸丁二酯⁃共⁃对苯二甲酸丁二酯/滑石粉共混物性能的影响[J]. 中国塑料, 2024, 38(6): 1-11. |
[9] | 牛荷, 吕明福, 张宗胤, 徐耀辉, 许巍, 张师军, 郭鹏. 聚乙醇酸加工技术中助剂的应用进展[J]. 中国塑料, 2024, 38(6): 105-110. |
[10] | 程恩, 叶冬蕾, 程德宝, 田华峰, 赵晓颖, 项爱民. 明胶基静电纺丝纳米纤维及其应用[J]. 中国塑料, 2024, 38(4): 103-108. |
[11] | 孟凡悦, 文悦, 李琛, 高珊. 生物基塑料包装需氧生物降解研究进展[J]. 中国塑料, 2024, 38(4): 109-115. |
[12] | 郭志豪, 冯涛, 李字义, 王晶, 王冰, 王艺翰, 曹博为. 塑料降解测试中塑料混合物湿度的变化规律[J]. 中国塑料, 2024, 38(3): 94-100. |
[13] | 宋瑞铭, 吕怀兴, 张文龙, 李斌, 李慧. 锂电池湿法隔膜用超高分子量聚乙烯的降解动力学研究[J]. 中国塑料, 2024, 38(12): 24-28. |
[14] | 孟佳, 刘同举. 工艺参数对聚乙烯溶剂热液化降解影响的研究进展[J]. 中国塑料, 2024, 38(12): 90-96. |
[15] | 宋瑞铭 吕怀兴 张文龙 李斌 李慧. 锂电池湿法隔膜用超高分子量聚乙烯的降解动力学研究[J]. , 2024, (12): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||