
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (12): 90-96.DOI: 10.19491/j.issn.1001-9278.2024.12.015
收稿日期:
2024-03-12
出版日期:
2024-12-26
发布日期:
2024-12-25
作者简介:
孟佳(1994—),男,河北省涿州市人,博士,工程师,mengjia.bjhy@sinopec.com
Received:
2024-03-12
Online:
2024-12-26
Published:
2024-12-25
摘要:
以聚乙烯(PE)这一广泛应用的塑料为例,从降解机理出发,综述了工艺条件包括温度、压力、停留时间、溶剂种类和溶剂/塑料(S/P)质量比对降解产物分布的影响。此外介绍了目前见诸报道的工业化装置,并展望了未来的研究方向。
中图分类号:
孟佳, 刘同举. 工艺参数对聚乙烯溶剂热液化降解影响的研究进展[J]. 中国塑料, 2024, 38(12): 90-96.
MENG Jia, LIU Tongju. Research progress in influence of process parameter on solvothermal liquefaction degradation of polyethylene[J]. China Plastics, 2024, 38(12): 90-96.
作者 | 塑料 种类 | 反应装置 | 温度/℃ | 压力/MPa | 停留时间/min | 溶剂类型 | 溶剂/塑料(S/P)质量比 | 最高油品产率及对应的最佳操作条件 |
---|---|---|---|---|---|---|---|---|
Rangarajan[ | PE⁃HD; PE⁃LD | 50 mL小型搅拌釜反应器 | 440~490 | 1.5 | 30;60 | 氢气 | — | 75 %;450 ℃ |
Passos[ | PE⁃HD; PE⁃LD | 20 mL炸弹式反应器 | 350 | — | 20 | 水 | 17∶1 | 1 % |
张海峰[ | PE⁃HD | 180 mL连续反应器 | 500~550 | 20~30 | 1.4~4 | 水 | — | 79 %;530 ℃,2 min,25 MPa |
Su[ | PE⁃HD | 125 mL搅拌釜反应器 | 450~480 | — | 0~30 | 水 | 2∶1~10∶1 | 91.4 %;460 ℃,1 min,6∶1(S/P)质量比 |
Moriya[ | PE⁃HD | 42 mL炸弹高压釜 | 425 | — | 0~120 | 水 | 5∶1 | 90.2 % |
Yuan[ | PE⁃HD | 500 mL搅拌釜 | 339~439 | 15.2~27.1 | 0~80 | 水 | 0∶1~1∶0 | 36.5 %;混合了木屑、379 ℃,20 min,6∶1(S/P)质量比 |
Pei[ | PE⁃HD | 1 000 mL搅拌釜反应器 | 320~380 | 9~11.4 | — | 乙醇 | 7∶1~17∶1 | 48.35 %;339 ℃ |
吴学华[ | PE⁃HD | 25 mL间歇式反应器 | 380~420 | 25 | 30~120 | 水 | 10∶1 | — |
Lu[ | PE⁃HD | 33~37 mL间歇式反应器 | 425~475 | — | 30~240 | 水 | — | 87;450 ℃,120 min |
Colnik[ | PE⁃LD | 75 mL高压间歇反应器 | 380~450 | 22~42 | 15~240 | 水 | 5∶1 | 98% ;450 ℃, 42 MPa |
苏晓丽[ | PE⁃LD | 125 mL间歇式高压釜反应器 | 450~480 | — | 0~30 | 水 | 2∶1~10∶1 | 91.4 %;460 ℃,1 min,6∶1(S/P)质量比 |
Wong[ | PE⁃LD | 1 000 mL间歇式反应器 | 162~338 | — | 37~143 | 水 | 1.9∶1~7.1∶1 | 13.6 % |
Liu[ | PE⁃LD | 100 mL间歇式反应器 | 350~400 | 9.04~22 | 90 | 水;甲醇;丙酮 | 6∶1 | 75.34 %;350 ℃,丙酮 |
作者 | 塑料 种类 | 反应装置 | 温度/℃ | 压力/MPa | 停留时间/min | 溶剂类型 | 溶剂/塑料(S/P)质量比 | 最高油品产率及对应的最佳操作条件 |
---|---|---|---|---|---|---|---|---|
Rangarajan[ | PE⁃HD; PE⁃LD | 50 mL小型搅拌釜反应器 | 440~490 | 1.5 | 30;60 | 氢气 | — | 75 %;450 ℃ |
Passos[ | PE⁃HD; PE⁃LD | 20 mL炸弹式反应器 | 350 | — | 20 | 水 | 17∶1 | 1 % |
张海峰[ | PE⁃HD | 180 mL连续反应器 | 500~550 | 20~30 | 1.4~4 | 水 | — | 79 %;530 ℃,2 min,25 MPa |
Su[ | PE⁃HD | 125 mL搅拌釜反应器 | 450~480 | — | 0~30 | 水 | 2∶1~10∶1 | 91.4 %;460 ℃,1 min,6∶1(S/P)质量比 |
Moriya[ | PE⁃HD | 42 mL炸弹高压釜 | 425 | — | 0~120 | 水 | 5∶1 | 90.2 % |
Yuan[ | PE⁃HD | 500 mL搅拌釜 | 339~439 | 15.2~27.1 | 0~80 | 水 | 0∶1~1∶0 | 36.5 %;混合了木屑、379 ℃,20 min,6∶1(S/P)质量比 |
Pei[ | PE⁃HD | 1 000 mL搅拌釜反应器 | 320~380 | 9~11.4 | — | 乙醇 | 7∶1~17∶1 | 48.35 %;339 ℃ |
吴学华[ | PE⁃HD | 25 mL间歇式反应器 | 380~420 | 25 | 30~120 | 水 | 10∶1 | — |
Lu[ | PE⁃HD | 33~37 mL间歇式反应器 | 425~475 | — | 30~240 | 水 | — | 87;450 ℃,120 min |
Colnik[ | PE⁃LD | 75 mL高压间歇反应器 | 380~450 | 22~42 | 15~240 | 水 | 5∶1 | 98% ;450 ℃, 42 MPa |
苏晓丽[ | PE⁃LD | 125 mL间歇式高压釜反应器 | 450~480 | — | 0~30 | 水 | 2∶1~10∶1 | 91.4 %;460 ℃,1 min,6∶1(S/P)质量比 |
Wong[ | PE⁃LD | 1 000 mL间歇式反应器 | 162~338 | — | 37~143 | 水 | 1.9∶1~7.1∶1 | 13.6 % |
Liu[ | PE⁃LD | 100 mL间歇式反应器 | 350~400 | 9.04~22 | 90 | 水;甲醇;丙酮 | 6∶1 | 75.34 %;350 ℃,丙酮 |
1 | 郝 琳, 贠建民, 赵雨萱, 等. 聚乙烯纳米膜包装对金针菇贮藏过程中品质特性和营养成分的影响[J]. 甘肃农业大学学报, 2023, 58(5): 218⁃226. |
HAO L, YUN J M, Zhao Y X, et al. Effects of nano⁃polyethylene film packaging on quality characteristics and nutritional components of Flammulina velutipes during storage[J]. Journal of Gansu Agricultural University, 2023, 58(5): 218⁃226. | |
2 | 刘重阳, 王胜辉, 王国圈. 基于CIVA的压力容器用聚乙烯衬里缺陷的超声检测研究[J].化工机械, 2021, 48(3): 376⁃381. |
LIU C Y, WANG S H, WANG G Q. Ultrasound testing study of polyethylene (PE) liner used in pressure vessel based on CIVA simulation[J]. Chemical Engineering & Machinery, 2021, 48(3): 376⁃381. | |
3 | 李红伟, 章勇锋, 齐武军, 等. 聚乙烯管道及其增强复合管道在实际工程应用中的问题[J]. 中国塑料, 2023, 37(8): 69⁃78. |
LI H W, ZHANG Y F, QI W J, et al. Problems of polyethylene pipes and reinforced polyethylene composite pipes in practical engineering application[J]. China Plastics, 2023, 37(8): 69⁃78. | |
4 | 尹 游, 李诗雨, 胡 佳, 等. 基于抗老化剂含量分布的交联聚乙烯电缆绝缘层老化特性[J].工程塑料应用, 2022, 50(9): 115⁃120. |
YIN Y, LI S Y, HU J, et al. Aging characteristics of crosslinked polyethylene cable insulation based on content distribution of anti⁃aging agent[J]. Engineering Plastics Application, 2022, 50(9): 115⁃120. | |
5 | 孟正华, 许 欢, 郭 巍, 等. 汽车废旧塑料物理改性再生技术研究进展[J]. 中国塑料, 2017, 31(8): 105⁃111. |
MENG Z H, XU H, GUO W, et al. Research progresses in physical recovery technology of automotive waste plastics[J]. China Plastics, 2017, 31(8): 105⁃111. | |
6 | 黄 茜, 张俏俏, 颜 瑾, 等. 武汉农用地土壤中微塑料污染状况和生态风险初探[J]. 环境工程, 2024, 42(6): 136⁃145. |
HUANG X, ZHANG Q Q, YAN J, et al. Pollution situation and risk assessment of microplastics in agricultural soil in Wuhan[J]. Environmental Engineering, 2024, 42(6): 136⁃145. | |
7 | BAI Bin, SUN Jianlong, YU Xinyue, et al. Study on a self⁃heating disposal system for hydrogen and heat by supercritical water gasification of waste plastics[J]. Energy Conversion and Management, 2024, 302: 118107. |
8 | SONG Zhiqi, XIU Furong, QI Yingying. Degradation and partial oxidation of waste plastic express packaging bags in supercritical water: Resources transformation and pollutants removal[J]. Journal of Hazardous Materials, 2022, 423: 127018. |
9 | LIU Yixin, AKULA K C, DANDAMUDI K P R, et al. Effective depolymerization of polyethylene plastic wastes under hydrothermal and solvothermal liquefaction conditions[J]. Chemical Engineering Journal, 2022, 446: 137238. |
10 | RANGARAJAN P, BHATTACHARYYA D, GRULKE E. PE⁃HD liquefaction: Random chain scission model[J]. Journal of Applied Polymer Science, 1998, 70(6): 1 239⁃1 251. |
11 | SESHASAYEE M S, SAVAGE P E. Oil from plastic via hydrothermal liquefaction: Production and characterization[J]. Applied Energy, 2020, 278: 115673. |
12 | BANIVAHEB S, GHALANDARI V, SMITH H, et al. SolvX: Solvothermal conversion of mixed waste plastics in supercritical toluene in presence of Pd/C catalyst[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108622. |
13 | SUN Mengqi, XU Zhen, MUNYANEZA N R, et al. Solvent⁃induced competing processes in polycarbonate degradation: depolymerization, chain scission, and branching/crosslinking[J]. Polymer Chemistry, 2023, 14(16): 1 915⁃1 922. |
14 | JAIME⁃AZUARA A, LONGO E, BOSELLI E, et al. Exploratory DSC investigation on the solvolytic depolymerization of PET in varied solvent systems and in the presence of model additives and contaminants[J]. Polymer Degradation and Stability, 2024: 110751. |
15 | KAMEEL N I A, DAUD W M A W, PATAH M F A, et al. Influence of reaction parameters on thermal liquefaction of plastic wastes into oil: A review[J]. Energy Conversion and Management: X, 2022, 14: 100196. |
16 | YU Jie, LIN Xiaoyu, HUANG Jingchen, et al. Recent advances in the production processes of hydrothermal liquefaction biocrude and aid⁃in investigation techniques[J]. Renewable Energy, 2023, 218:119348. |
17 | BALOCH H A, SIDDIQUI M T H, NIZAMUDDIN S, et al. Solvothermal co⁃liquefaction of sugarcane bagasse and polyethylene under sub⁃supercritical conditions: Optimization of process parameters[J]. Process Safety and Environmental Protection, 2020, 137: 300⁃311. |
18 | JANUSZEWICZ K, HUNICZ J, KAZIMIERSKI P, et al. An experimental assessment on a diesel engine powered by blends of waste⁃plastic⁃derived pyrolysis oil with diesel[J]. Energy, 2023, 281: 128330. |
19 | FAISAL F, RASUL M G, AHMED⁃CHOWDHURY A, et al. Uncovering the differences: A comparison of properties of crude plastic pyrolytic oil and distilled and hydrotreated plastic diesel produced from waste and virgin plastics as automobile fuels[J]. Fuel, 2023, 350: 128743. |
20 | 壳牌将在新加坡生产可持续丁二烯产品[J]. 石油化工技术与经济, 2022, 38(1): 47. |
Shell will produce sustainable butadiene products in Singapore[J]. Technology & Economics in Petrochemicals, 2022, 38(1): 47. | |
21 | 赵玉龙, 张 荣, 毕继诚. 超临界水中聚乙烯降解油化的研究和开发进展[J]. 石油化工, 2005, 34(1): 78⁃83. |
ZHAO Y L, ZHANG R, BI J C. Progress of research and development on polyethylene degradation to oil in supercritical water[J]. Petrochemical Technology, 2005, 34(1): 78⁃83. | |
22 | SUBRAMANI V B, ATANDA L, DOHERTY W O S, et al. Co⁃liquefaction of cotton gin trash and low⁃density polyethylene wastes via supercritical ethanolysis for hydrocarbon⁃rich oil[J]. Energy Conversion and Management, 2023, 290: 117216. |
23 | PREETAM A, DWIVEDI U, NAIK S N, et al. A feasible approach for the treatment of waste computer casing plastic using subcritical to supercritical acetone: Statistical modelling and optimization[J]. Journal of Environmental Management, 2023, 345: 118549. |
24 | CHEN Zhong, TONG Kun, HE Chunlan, et al. High quality oil recovery from oil⁃based drill cuttings via catalytic upgrading in presence of near⁃/supercritical water and different industrial wastes[J]. Journal of Cleaner Production, 2021, 321: 129061. |
25 | FU Zegang, ZHANG Yeshui, JI Guozhao, et al. Experimental analysis on products distribution, characterization and mechanism of waste polypropylene (PP) and polyethylene terephthalate (PET) degradation in sub⁃/supercritical water[J]. Chemosphere, 2024, 350: 141045. |
26 | JIN Kai, VOZKA P, KILAZ G . et al. Conversion of polyethylene waste into clean fuels and waxes via hydrothermal processing (HTP)[J]. Fuel, 2020, 273: 117726. |
27 | SAHA N, BANIVAHEB S, TOUFIQ⁃REZA M. Towards solvothermal upcycling of mixed plastic wastes: Depolymerization pathways of waste plastics in sub⁃ and supercritical toluene[J]. Energy Conversion and Management: X, 2022, 13: 100158. |
28 | BALLICE L. A kinetic approach to the temperature⁃programmed pyrolysis of low⁃ and high⁃density polyethylene in a fixed bed reactor : determination of kinetic parameters for the evolution of n⁃paraffins and 1⁃olefins[J]. Fuel, 2001, 80: 1 923⁃1 935. |
29 | BUDRUGEAC P, CUCOS A, DASCALU R, et al. Application of model⁃free and multivariate nonlinear regression methods for evaluation of the kinetic scheme and kinetic parameters of thermal decomposition of low density polyethylene[J]. Thermochimica Acta, 2022, 708: 179138. |
30 | dos PASSOS J S, CLASIUS M, BILLER P. Screening of common synthetic polymers for depolymerization by subcritical hydrothermal liquefaction[J]. Process Safety and Environmental Protection, 2020, 139: 371⁃379. |
31 | 张海峰, 苏晓丽, 孙东凯, 等. 聚乙烯塑料在连续超临界水反应器中的油化研究[J]. 燃料化学学报, 2007, 35(4): 487⁃491. |
ZHANG H F, SU X L, SUN D K, et al. Investigation on degradation of polyethylene to oil in a continuous supercritical water reactor[J]. Journal of Fuel Chemistry and Technology, 2007, 35(4): 487⁃491. | |
32 | SU Xiaoli, ZHAO Yulong, ZHANG Rong, et al. Investigation on degradation of polyethylene to oils in supercritical water[J]. Fuel Processing Technology, 2004, 85(8): 1 249⁃1 258. |
33 | MORIYA T, ENOMOTO H. Characteristics of polyethylene cracking in supercritical water compared to thermal cracking[J]. Polymer Degradation and Stability, 1999, 65(3): 373⁃386. |
34 | YUAN Xingzhong, CAO Hongtao, LI Hui, et al. Quantitative and qualitative analysis of products formed during co⁃liquefaction of biomass and synthetic polymer mixtures in sub⁃ and supercritical water[J]. Fuel Processing Technology, 2009, 90(3): 428⁃434. |
35 | PEI Xiaokai, YUAN Xingzhong, ZENG Guangminget al. Co⁃liquefaction of microalgae and synthetic polymer mixture in sub⁃ and supercritical ethanol[J]. Fuel Processing Technology, 2012, 93(1): 35⁃44. |
36 | 吴学华. 聚乙烯在超临界水中的降解行为研究[D]. 成都: 西南交通大学, 2005. |
37 | LU Taofeng, JAN K, CHEN Wanting. Hydrothermal liquefaction of pretreated polyethylene⁃based ocean⁃bound plastic waste in supercritical water[J]. Journal of the Energy Institute, 2022, 105: 282⁃292. |
38 | COLNIK M, KOTNIK P, KNEZ Z, et al. Hydrothermal decomposition of polyethylene waste to hydrocarbons rich oil[J]. The Journal of Supercritical Fluids, 2021, 169: 105136. |
39 | 苏晓丽, 赵玉龙, 张 荣, 等. 超临界水中聚乙烯油化的研究[J]. 燃料化学学报, 2004, 32(6): 750⁃755. |
40 | WONG S L, NGADI N, AMIN N A S, et al. Pyrolysis of low density polyethylene waste in subcritical water optimized by response surface methodology[J]. Environmental Technology, 2016, 37(2): 245⁃254. |
41 | 朱光泽, 周 炜, 夏志东, 等. 有机废弃物热解分析技术现状与展望[J]. 中国塑料, 2023, 37(11): 101⁃116. |
ZHU G Z, ZHOU W, XIA Z D, et al. Current situation and prospect of pyrolysis analysis technology of organic wastes[J]. China Plastics, 2023, 37(11): 101⁃116. | |
42 | DING Weijing, JIN Hui, SUN Panpan. Molecular dynamics simulation on the diffusion coefficients of the carbon and hydrocarbon radicals in the hydrogen production process in supercritical water gasification[J]. Journal of Cleaner Production, 2023, 429: 139552. |
43 | PINSUWAN K, OPAPRAKASIT P, PETCHSUK A, et al. Chemical recycling of high⁃density polyethylene (PE⁃HD) wastes by oxidative degradation to dicarboxylic acids and their use as value⁃added curing agents for acrylate⁃based materials[J]. Polymer Degradation and Stability, 2023, 210: 110306. |
44 | MEESUNGNOEN J, JAY⁃GERIN, J P. Radiolysis of supercritical water at 400 ℃: density dependence of the rate constant for the reaction of hydronium ions with hydrated electrons[J]. Physical Chemistry Chemical Physics, 2019, 21: 9 141⁃9 144. |
45 | BAI Bin, JIN Hui, FAN Chao, et al. Experimental investigation on liquefaction of plastic waste to oil in supercritical water[J]. Waste Management, 2019, 89: 247⁃253. |
46 | PLYASUNOV A V, BUGAEV I A. An Assessment of Reproduction of ΔrHo, ΔrCpo, ΔrVo for Water Ionization with Existing Formulations for the Ionization Constant of Water[J]. Journal of Physical and Chemical Reference Data, 2024, 53(1): 013101. |
47 | 祁伟岩. 超临界水改质重油中脱硫与结焦的机理研究[D]. 天津:天津大学, 2023. |
48 | CHEN Zhong. New insight into subcritical and supercritical water reactivity during non⁃catalytic hydrothermal upgrading of heavy oil[J]. Fuel, 2024, 366: 131380. |
49 | TORRES⁃ZAPATA T, LOZANO⁃MARTINEZ P, MARTINEZ⁃LORENZO M V, et al. Hydrothermally processed polyethylene as starting point for fermentative production of triglycerides[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108683. |
50 | YUAN Zhilong, JIA Guangchao, CUI Xin, et al. Effects of temperature and time on supercritical methanol Co⁃Liquefaction of rice straw and linear low⁃density polyethylene wastes[J]. Energy, 2022, 245: 123315. |
51 | CAMACHO J, DIEZ E, ISMAEL D, et al. Hansen solubility parameter: from polyethylene and poly(vinyl acetate) homopolymers to ethylene–vinyl acetate copolymers[J]. Polymer International, 2017, 66(7): 1 013⁃1 020. |
52 | SINGH B, SHARMA N. Mechanistic implications of plastic degradation[J]. Polymer Degradation and Stability, 2008, 93(3): 561⁃584. |
53 | SERRANO D, AGUADO J, VICENTE G, et al. Effects of hydrogen⁃donating solvents on the thermal degradation of PE⁃HD[J]. Journal of Analytical and Applied Pyrolysis, 2007, 78(1): 194⁃199. |
54 | XIE Teng, ZHAO Lixin, YAO Zonglu, et al. Co⁃pyrolysis of biomass and polyethylene: Insights into characteristics, kinetic and evolution paths of the reaction process[J]. Science of The Total Environment, 2023, 897: 165443. |
55 | FENG Zhen, ZHAO Jianmin, ROCKWELL J, et al. Direct liquefaction of waste plastics and coliquefaction of coal⁃plastic mixtures[J]. Fuel Processing Technology, 1996, 49(1): 17⁃30. |
56 | CHEN Jingwei, WANG Qiteng, WEI Hongda, et al. Molecular dynamic study on mechanisms of polyvinylidene fluoride decomposition by using supercritical water[J]. Chemical Engineering Journal, 2022, 431: 133958. |
57 | ZHANG Jinli, WENG Xiaoxia, HAN You, et al. The effect of supercritical water on coal pyrolysis and hydrogen production: A combined ReaxFF and DFT study[J]. Fuel, 2013, 108: 682⁃690. |
58 | YAN Shuo, XIA Dehong, LAI N C, et al. New insight into the synergistic reactions involved in the hydrothermal co⁃liquefaction of synthetic polymer wastes by molecular dynamics and DFT methods[J]. Journal of Hazardous Materials, 2023, 449: 131032. |
59 | DONG Yu, ZHAO Qiuyang, JIN Hui, et al. Hydrogen donation of supercritical water in asphaltenes upgrading by deuterium tracing method[J]. The Journal of Supercritical Fluids, 2024, 205: 106137. |
60 | 石景文. 韩将建首个水热法塑料回收厂[J]. 再生资源与循环经济, 2022, 15(2): 48. |
SHI J W. South Korea will build the first hydrothermal plastic recycling plant[J]. Recyclable Resources and Circular Economy, 2022, 15(2): 48. |
[1] | 文麒霖, 贾雪华, 孙炎君, 牛思霁, 陈英红, 陈宁. 生物可降解塑料包装薄膜的制备及应用进展[J]. 中国塑料, 2024, 38(9): 112-122. |
[2] | 崔豹, 杨建军, 吴庆云, 吴明元, 张建安, 刘久逸. 聚乳酸复合材料共混改性研究及应用进展[J]. 中国塑料, 2024, 38(9): 129-136. |
[3] | 殷茂峰, 王晓珂, 孙国华, 张信, 李鹏鹏, 马劲松, 肖军, 侯连龙. 红外光谱快速检测生物降解聚酯的研究[J]. 中国塑料, 2024, 38(9): 94-100. |
[4] | 梁济峰, 瞿金平. 体积脉动注塑rPE⁃HD/rPET混杂体系结构性能演变[J]. 中国塑料, 2024, 38(8): 1-7. |
[5] | 王兴国, 吕明福, 黄逸伦, 郭鹏, 高达利, 张师军. 聚乙醇酸高温降解性能研究及其调控方法[J]. 中国塑料, 2024, 38(8): 13-19. |
[6] | 陈天欢, 严成, 蒋干兵, 郭帅, 颜甜甜, 钱坤, 俞科静. 单宁酸表面改性PE⁃UHMW纤维及其界面性能研究[J]. 中国塑料, 2024, 38(8): 26-32. |
[7] | 何和智, 黄宗海, 赖文, 熊华威. PLA/PBAT/CB防静电包装材料的制备及其性能研究[J]. 中国塑料, 2024, 38(7): 1-8. |
[8] | 王珅, 刘宣伯, 张艳芳, 贾雪飞, 祝桂香, 张龙贵. 生物可降解无纺布材料研究进展[J]. 中国塑料, 2024, 38(7): 86-92. |
[9] | 赵永飞, 张文才, 王科, 郝晓刚, 申峻, 杨喜英, 赵丽荣, 李建红, 赵志新, 乔杰. 废弃聚乙烯改性剂改性沥青研究及其应用技术进展[J]. 中国塑料, 2024, 38(7): 93-99. |
[10] | 骆佳伟, 周炳, 王洪学, 贾钦. 扩链条件对聚丁二酸丁二酯⁃共⁃对苯二甲酸丁二酯/滑石粉共混物性能的影响[J]. 中国塑料, 2024, 38(6): 1-11. |
[11] | 牛荷, 吕明福, 张宗胤, 徐耀辉, 许巍, 张师军, 郭鹏. 聚乙醇酸加工技术中助剂的应用进展[J]. 中国塑料, 2024, 38(6): 105-110. |
[12] | 段凯歌, 陈小蝶, 倪佳, 梅振威, 周朝锡, 叶小平, 朱辉, 于东明. 紫外交联高密度聚乙烯材料的制备及性能研究[J]. 中国塑料, 2024, 38(5): 24-27. |
[13] | 严成, 李露露, 陈天欢, 郭帅, 俞科静. 超高分子量聚乙烯纤维表面纳米ZnO可控生长及其界面性能研究[J]. 中国塑料, 2024, 38(5): 47-54. |
[14] | 张春波, 刘宣伯, 姚雪容, 苏萃, 施红伟, 张龙贵, 张韬毅. 共聚焦拉曼成像技术研究PE⁃LD/EVOH共混物的三维相结构[J]. 中国塑料, 2024, 38(4): 1-5. |
[15] | 程恩, 叶冬蕾, 程德宝, 田华峰, 赵晓颖, 项爱民. 明胶基静电纺丝纳米纤维及其应用[J]. 中国塑料, 2024, 38(4): 103-108. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||