1 |
张 琦, 夏礼栋, 李 源, 等. 高性能碳纤维增强尼龙10T复合材料制备与性能[J]. 工程塑料应用, 2022, 50(5): 44⁃49.
|
|
ZHANG Q, XIA L D, LI Y, et al. Preparation and properties of high⁃performance carbon fiber reinforced PA10T composites[J]. Engineering Plastics Application, 2022, 50(5): 44⁃49.
|
2 |
叶振兴. 高性能玻璃纤维增强PA10T/PA66复合材料的制备及其性能研究[D]. 广州:华南理工大学, 2021.
|
3 |
Liu B, Hu G, Zhang J, et al. Non⁃isothermal crystallization, yellowing resistance and mechanical properties of heat⁃resistant nylon 10T/66/titania dioxide/glass fibre composites[J]. RSC Advances, 2019, 9(13): 7 057⁃7 064.
|
4 |
Zhu R, Pu Z, Zheng L, et al. Effect of addition of fillers ( MoS 2 and PFA ) on the tribological and mechanical properties of biobased semi‐aromatic polyamide ( PA10T )[J]. Polymer Composites, 2024, 45(4): 3 713⁃3 723.
|
5 |
王增效, 颜瑞祥, 陈勇伟. 玻璃纤维增强生物基PA10T复合材料的制备及性能研究[J]. 上海塑料, 2023, 51(2): 36⁃41.
|
|
WANG Z X, YAN R X, CHEN Y W. Preparation and properties of glass fiber reinforced bio⁃based PA10T composites[J]. Shanghai Plastics, 2023, 51(2): 36⁃41.
|
6 |
Aparna A, Venu G, Sethulekshmi A S, et al. Biodegradable and biocompatible polymer nanocomposites[M]. Elsevier, 2023: 35⁃68.
|
7 |
Lagarinhos J, Magalhães Da Silva S, Oliveira J M. Non⁃Isothermal crystallization Kinetics of polyamide 6/graphene nanoplatelets nanocomposites obtained via in situ polymerization: effect of nanofiller size[J]. Polymers, 2023, 15(20): 4 109.
|
8 |
Das S, Samal S K, Mohanty S, et al. Crystallization in multiphase polymer systems[M]. Elsevier, 2018: 313⁃339.
|
9 |
Ma Z, He X, Cao X, et al. Analysis of the non⁃isothermal crystallization kinetics of the polyamide 6/M⁃lignin composites[J]. Journal of Macromolecular Science, Part B, 2024, 63(10): 930⁃940.
|
10 |
Lagarinhos J, Oliveira M. Nucleation activity of graphene in polyamide 6⁃based nanocomposites prepared by In situ polymerization[J]. Materials Proceedings, 2022, 8(1): 83.
|
11 |
蒋 姗, 谢 聪, 杜欣瑶, 等. PA66/PA6I6T共混物非等温结晶动力学及性能[J]. 高分子材料科学与工程, 2020, 36(5): 98⁃106+116.
|
|
JIANG S, XIE C, DU X Y, et al. Non⁃Isothermal crystallization kinetics and properties of PA66/PA6I6T blends[J]. Polymer Materials Science and Engineering, 2020, 36(5): 98⁃106+116.
|
12 |
Jeziorny A. Parameters characterizing the kinetics of the non⁃isothermal crystallization of poly(ethylene terephthalate) determined by dsc.[J]. Polymer, 1978, 19(10): 1 142⁃1 144.
|
13 |
OZAWA T. Kinetics of non⁃isothermal crystallization[J]. Polymer, 1971, 12(3): 150⁃158.
|
14 |
莫志深. 一种研究聚合物非等温结晶动力学的方法[J]. 高分子学报, 2008(7): 656⁃661.
|
|
MO Z S. A method for the non⁃isothermal crystallization kinetics of polymers[J]. Acta Polymerica Sinica, 2008(7): 656⁃661.
|
15 |
Fu X, Dong X, Yang G, et al. Non⁃isothermal crystallization kinetics of graphene/PA10T composites[J]. Heliyon, 2022, 8(8): e10206.
|
16 |
Meng C, Liu X. Synthesis of bio⁃based semi aromatic high temperature polyamide PA5T/56 and effect of benzene ring on non⁃isothermal crystallization kinetics[J]. Journal of Polymer Research, 2021, 28(10): 383.
|
17 |
刘志伟, 贾润礼, 郝建淦, 等. PA6/硅灰石纤维复合材料的非等温结晶动力学研究[J]. 塑料科技, 2013, 41(9): 31⁃36.
|
|
LIU Z W, JIA R L, HAO J G, et al. Study on non⁃isothermal crystallization kinetics of PA6/ wollastonite composites[J]. Plastics Science and Technology, 2013, 41(9): 31⁃36.
|
18 |
梁军杰, 程 锋, 黄永甫, 等. 不同无机纳米填料对PPS树脂材料的非等温结晶行为影响[J]. 塑料工业, 2022, 50(5): 171⁃176.
|
|
LIANG J J, CHENG F, HUANG Y F, et al. Influence of different inorganic nanoparticles on non⁃isothermal crystallization behaviour of PPS Composites[J]. China Plastics Industry, 2022, 50(5): 171⁃176.
|
19 |
Xie S, Wang W, Yao J, et al. Synthesis of biobased polyamide PA5T and its furan copolymer and study on non‑isothermal crystallization kinetics[J]. Journal of Polymers and the Environment, 2023, 31(8): 3 585⁃3 603.
|
20 |
Yao H, Li W, Zeng Z, et al. Non⁃isothermal crystallization kinetics of poly(phthalazinone ether sulfone)/MC nylon 6 in⁃situ composites[J]. Iranian Polymer Journal, 2022, 31(7): 869⁃882.
|
21 |
Meng C, Liu X. One⁃step method for synthesis of bio⁃based semi⁃aromatic high⁃temperature polyamide PA5T/56 and its non⁃isothermal crystallization kinetics[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(21): 12 245⁃12 252.
|