
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (10): 159-166.DOI: 10.19491/j.issn.1001-9278.2022.10.022
张翔1, 伍先安1, 李长金2, 杜长彪1, 李好义1, 焦志伟1, 杨卫民1, 张杨1()
收稿日期:
2022-04-18
出版日期:
2022-10-26
发布日期:
2022-10-27
通讯作者:
张杨(1966-),女,副教授,主要从事流体机械等研究工作,2002500011@mail.buct.edu.cn
ZHANG Xiang1, WU Xian′an1, LI Changjin2, DU Changbiao1, LI Haoyi1, JIAO Zhiwei1, YANG Weimin1, ZHANG Yang1()
Received:
2022-04-18
Online:
2022-10-26
Published:
2022-10-27
Contact:
ZHANG Yang
E-mail:2002500011@mail.buct.edu.cn
摘要:
简述了微纳层叠共挤技术的发展;总结了近些年来基于微纳层叠技术制备纳米纤维的研究进展,包括聚合物参数,制备方法和成纤机理;对目前几种典型微纳层叠成纤方法进行了分类和对比,并对纤维的性能进行了阐述;对微纳层叠纳米纤维的应用进行了介绍。最后针对微纳层叠技术用于纳米纤维制备的发展方向和应对的挑战进行了浅析。
中图分类号:
张翔, 伍先安, 李长金, 杜长彪, 李好义, 焦志伟, 杨卫民, 张杨. 基于微纳层叠技术的聚合物纳米纤维制备及应用研究进展[J]. 中国塑料, 2022, 36(10): 159-166.
ZHANG Xiang, WU Xian′an, LI Changjin, DU Changbiao, LI Haoyi, JIAO Zhiwei, YANG Weimin, ZHANG Yang. Research progress in preparation and applications of polymer nanofibers based on micro⁃nano lamination technology[J]. China Plastics, 2022, 36(10): 159-166.
目标层 | 隔离层 | 共挤温度/℃ | 去除隔离层方法 | 参考文献 |
---|---|---|---|---|
PLA | PEO | - | 水 | [ |
PCL | PEO | 180 | 水 | [ |
PA6 | PEO | 240 | 水 | [ |
PE⁃LD | PVB | 200 | 乙醇 | [ |
PE⁃LD | PS | 210 | 甲苯 | [ |
PP/PE | PCL | - | 异丙醇 | [ |
PE⁃HD/PP | PS | 240 | 高压水枪 | [ |
PP/PA6 | PS | - | 高压水枪 | [ |
PE⁃LD/PE⁃HD | PS | 230 | 高压水枪 | [ |
PE⁃LD/PP | PA6 | - | Actafoam溶剂 | [ |
目标层 | 隔离层 | 共挤温度/℃ | 去除隔离层方法 | 参考文献 |
---|---|---|---|---|
PLA | PEO | - | 水 | [ |
PCL | PEO | 180 | 水 | [ |
PA6 | PEO | 240 | 水 | [ |
PE⁃LD | PVB | 200 | 乙醇 | [ |
PE⁃LD | PS | 210 | 甲苯 | [ |
PP/PE | PCL | - | 异丙醇 | [ |
PE⁃HD/PP | PS | 240 | 高压水枪 | [ |
PP/PA6 | PS | - | 高压水枪 | [ |
PE⁃LD/PE⁃HD | PS | 230 | 高压水枪 | [ |
PE⁃LD/PP | PA6 | - | Actafoam溶剂 | [ |
拉伸比 | 弹性模量/ GPa | 最大应力/ MPa | 断裂伸长率/ % | |
---|---|---|---|---|
PA6/PEO纤维带 的力学性能 | 1 | 0.8±0.2 | 51±5 | 443±61 |
2 | 2.2±0.2 | 97±5 | 26±7 | |
3 | 2.7±0.4 | 107±17 | 16±4 | |
4 | 3.3±0.2 | 145±16 | 12±2 | |
6 | 4.2±0.1 | 235±51 | 8±1 | |
PA6/PET纤维带 的机力学性能 | 1 | 0.33±0.02 | 54±9 | — |
4 | 2.5±0.4 | 330±12 | — | |
9.7 | 6.1±0.2 | 480±21 | — | |
普通纤维带 | 类型A | 1.9±0.1 | 131±15 | 17±1 |
类型B | 2.6±0.2 | 171±13 | 16±2 |
拉伸比 | 弹性模量/ GPa | 最大应力/ MPa | 断裂伸长率/ % | |
---|---|---|---|---|
PA6/PEO纤维带 的力学性能 | 1 | 0.8±0.2 | 51±5 | 443±61 |
2 | 2.2±0.2 | 97±5 | 26±7 | |
3 | 2.7±0.4 | 107±17 | 16±4 | |
4 | 3.3±0.2 | 145±16 | 12±2 | |
6 | 4.2±0.1 | 235±51 | 8±1 | |
PA6/PET纤维带 的机力学性能 | 1 | 0.33±0.02 | 54±9 | — |
4 | 2.5±0.4 | 330±12 | — | |
9.7 | 6.1±0.2 | 480±21 | — | |
普通纤维带 | 类型A | 1.9±0.1 | 131±15 | 17±1 |
类型B | 2.6±0.2 | 171±13 | 16±2 |
1 | GOPAL R, KAUR S, FENG C Y, et al. Electrospun nanofibrous polysulfone membranes as pre⁃filters: particulate removal [J]. Journal of Membrane Science, 2007, 289(1/2): 210⁃219. |
2 | 龚 雪, 杨金龙, 姜玉林, 等. 静电纺丝技术在锂离子动力电池中的应用 [J]. 化学进展, 2014(1): 41⁃47. |
GONG X, YANG J L, JIANG Y L,et al.Application of electrospinning technique in power Lithium⁃Ion batteries[J]. 2014(1): 41⁃47. | |
3 | KIM M, KIM Y K, LIM S K, et al. Efficient visible light⁃induced H2 production by Au@CdS/TiO2 nanofibers: Synergistic effect of core–shell structured Au@CdS and densely packed TiO2 nanoparticles [J]. Applied Catalysis B: Environmental, 2015, 166⁃167: 423⁃431. |
4 | PERSANO L, CAMPOSEO A, TEKMEN C, et al. Industrial upscaling of electrospinning and applications of polymer nanofibers: a review[J]. Macromolecular Materials and Engineering, 2013, 298(5): 504⁃520. |
5 | PRAKOBNA K, GALLAND S, BERGLUND L A. High⁃performance and moisture⁃stable cellulose⁃starch nanocomposites based on bioinspired core⁃shell nanofibers [J]. Biomacromolecules, 2015, 16(3): 904⁃912. |
6 | PEREZ R A, KIM H W. Core⁃shell designed scaffolds for drug delivery and tissue engineering [J]. Acta Biomater, 2015, 21: 2⁃19. |
7 | MACDIARMID A G, JONES W E, NORRIS I D, et al. Electrostatically⁃generated nanofibers of electronic polymers [J]. Synthetic Metals, 2001, 119(1⁃3): 27⁃30. |
8 | HUANG Z M, ZHANG Y Z, KOTAKI M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J]. Composites Science and Technology, 2003, 63(15): 2 223⁃2 253. |
9 | SEHAQUI H, ZHOU Q, BERGLUND L A. High⁃porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC) [J]. Composites Science and Technology, 2011, 71(13): 1 593⁃1 599. |
10 | 刘琼珍, 周 舟, 李沐芳, 等. 热塑性纳米纤维的制备及功能化 [J]. 中国材料进展, 2014, 33(8): 8. |
LIU Q Z, ZHOU Z, LI M F,et al. Fabrication and functionalization of thermoplastic nanofibers[J]. Materials China, 2014, 33(8): 8. | |
11 | HUANG Y, SONG J, YANG C, et al. Scalable manufacturing and applications of nanofibers [J]. Materials Today, 2019, 28: 98⁃113. |
12 | LI D, XIA Y. Electrospinning of Nanofibers: Reinventing the Wheel?[J]. Advanced Materials, 2004, 16(14): 1 151⁃1 170. |
13 | YANG W, LI H, CHEN X. Melt Electrospinning [M]. Electrospinning: Nanofabrication and Applications. 2019: 339⁃361. |
14 | 杨卫民, 李好义, 吴卫逢, 等. 熔体静电纺丝技术研究进展 [J]. 北京化工大学学报:自然科学版, 2014, (4): 13. |
15 | LEE Y E, WADSWORTH L C. Fiber and web formation of melt⁃blown thermoplastic polyurethane polymers [J]. Journal of Applied Polymer Science, 2007, 105(6): 3 724⁃3 727. |
16 | ELLISON C J, PHATAK A, GILES D W, et al. Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup [J]. Polymer, 2007, 48(11): 3 306⁃3 316. |
17 | LI H, KE Y, HU Y. Polymer nanofibers prepared by template melt extrusion [J]. Journal of Applied Polymer Science, 2006, 99(3): 1 018⁃1 023. |
18 | TU C, CAI Q, YANG J, et al. The fabrication and characterization of poly(lactic acid) scaffolds for tissue engineering by improved solid⁃liquid phase separation [J]. Polymers for Advanced Technologies, 2003, 14(8): 565⁃573. |
19 | 吴昌政, 丁玉梅, 李好义, 等. 熔体微分离心纺丝技术 [J]. 纺织学报, 2016, 37(1): 7. |
WU C Z, DING Y M, LI H Y,et al. Process of melt differential centrifugal spinning technology[J]. Journal of Textile Research, 2016, 37(1): 7. | |
20 | BADROSSAMAY M R, MCILWEE H A, GOSS J A, et al. Nanofiber assembly by rotary jet⁃spinning [J]. Nano Lett, 2010, 10(6): 2 257⁃2 261. |
21 | SONG J H, KIM Y T, CHO S, et al. Surface⁃embedded stretchable electrodes by direct printing and their uses to fabricate ultrathin vibration sensors and circuits for 3D structures [J]. Adv Mater, 2017, 29(43). 1702625 |
22 | LIU S, LI L. Ultrastretchable and self⁃healing double⁃network hydrogel for 3D printing and strain sensor [J]. ACS Appl Mater Interfaces, 2017, 9(31): 26 429⁃26 437. |
23 | 梁 越, 刘春玲, 冼启华,等. 闪蒸纺超细纤维非织造布研究及其应用 [J]. 福建轻纺, 2010, (7): 3. |
24 | JORDAN A M, VISWANATH V, KIM S E, et al. Processing and surface modification of polymer nanofibers for biological scaffolds: a review [J]. J Mater Chem B, 2016, 4(36): 5 958⁃5 974. |
25 | Alfey T, Schrenk W J. Multipolymer Systems[J]. Science (New York, N.Y.), 1980, 208(4446):813⁃818. |
26 | 熊良钊, 杨卫民, 周 星,等. 微纳层叠挤出技术的研究进展 [J]. 中国塑料, 2015, 29(8): 8. |
XIONG L Z, YANG W M, ZHOU X,et al. Research progress of extrusion technology for micro⁃nano layer films[J]. China Plastics,2015, 29(8): 8. | |
27 | 王 乾, 谢鹏程, 杨卫民, 等. 微纳叠层功能复合材料模内制备新方法 [J]. 塑料, 2011, 40(4): 50⁃52. |
WANG Q, XIE P C, YANG W M, et al. The new mould preparation methods of micro⁃nano laminated functional composite[J]. Plastics, 2011, 40(4): 50⁃52. | |
28 | JORDAN A M, KORLEY L. Toward a tunable fibrous scaffold: structural development during uniaxial drawing of coextruded poly(ε⁃caprolactone) fibers[J]. Macromolecules, 2015, 48(8): 2 614⁃2 627. |
29 | 王 明, 郭少云. 微纳多层功能复合材料的制备新技术 [J]. 工程塑料应用, 2008, 36(11): 5. |
WANG M, GUO S Y.Stratified functional composites with micromterer⁃or nanometer⁃scale thickness prepared by a new processing technology[J]. Engineering Plastics Application, 2008, 36(11): 5. | |
30 | 钟 雁, 谢鹏程, 吴 廷, 等. 新型微纳叠层功能复合材料制备装置及其性能研究 [J]. 橡塑技术与装备, 2011, 37(3): 4. |
31 | 李长金, 周 星, 焦志伟, 等. 层叠单元流道对纤维取向作用的数值模拟 [J]. 塑料科技, 2014, 42(4): 3. |
LI C J, ZHOU X, JIAO Z W, et al. Numerical simulation for effect of laminated element runner on fiber orientation[J]. Plastics Science and Technology,2014, 42(4): 3. | |
32 | 周 星, 焦志伟, 李长金, 等. 基于微纳层叠技术的PVC分子取向对增塑剂迁移的影响 [J]. 中国塑料, 2015, (5): 5. |
ZHOU X, JIAO Z W, LI C J, et al. Effect of pvc molecular orientation on plasticizer migration based on micro⁃nano lamination technology[J]. China Plastics, 2015, (5): 5. | |
33 | ARMSTRONG S R, DU J, BAER E. Co⁃extruded multilayer shape memory materials: Nano⁃scale phenomena [J]. Polymer, 2014, 55(2): 626⁃631. |
34 | JOSEPH E G, BUDHAVARAM N, DEPOLO W, et al. Nanoribbons fabricated by melt electrospinning [J]. Polymer Journal, 2020, 53(3): 493⁃503. |
35 | 盛天阳, 谭 晶, 张政和, 等. 微纳层叠聚丙烯腈凝胶流动特性的数值模拟研究 [J]. 中国塑料, 2021, 35(7): 6. |
SHENG T Y, TAN J, ZHANG Z H, et al. Numerical simulation of polyacrylonitrile gel flow characteristics in laminated runner[J]. China Plastics, 2021, 35(7): 6. | |
36 | GAO J, FU X T, DING M M, et al. Studies on partial compatibility of PP and PS [J]. Chinese Journal of Polymer Science, 2010, 28(4): 647⁃656. |
37 | CARR J M, LANGHE D S, PONTING M T, et al. Confined crystallization in polymer nanolayered films: A review [J]. Journal of Materials Research, 2012, 27(10): 1 326⁃1 350. |
38 | LAI C Y, HILTNER A, BAER E, et al. Deformation of confined poly(ethylene oxide) in multilayer films [J]. ACS Appl Mater Interfaces, 2012, 4(4): 2 218⁃2 227. |
39 | SCHRENK W J, ALFREY T. Coextruded multilayer polymer films and sheets⁃ science direct [J]. Polymer Blends, 1978: 129⁃165. |
40 | WANG J, AYYAR R, OLAH A, et al. Processing⁃structure⁃property relationships of novel fibrous filters produced by a melt⁃process [J]. Journal of Materials Science, 2015, 51(1): 188⁃203. |
41 | DU J, LIU D, CHEN S, et al. A novel method for fabricating continuous polymer nanofibers [J]. Polymer, 2016, 102: 209⁃213. |
42 | JORDAN A M, MAROTTA T, KORLEY L T J. Reducing environmental impact: solvent and PEO reclamation during production of melt⁃extruded PCL nanofibers[J].ACS Sustainable Chemistry & Engineering, 2015, 3(11): 2 994⁃3 003. |
43 | WANG J, OLAH A, BAER E. Continuous micro⁃/nano⁃fiber composites of polyamide 6/polyethylene oxide with tunable mechanical properties using a novel co⁃extrusion technique [J]. Polymer, 2016, 82: 166⁃171. |
44 | ZAKARIA M, SHIBAHARA K, NAKANE K. Melt⁃electrospun polyethylene nanofiber obtained from polyethylene/polyvinyl butyral blend film [J]. Polymers (Basel), 2020, 12(2). 457. |
45 | CHENG J, PU H, DU J. A processing method with high efficiency for low density polyethylene nanofibers reinforced by aligned carbon nanotubes via nanolayer coextrusion [J]. Polymer, 2017, 111: 222⁃228. |
46 | LENART W R, JANG K S, JORDAN A M, et al. Mechanically tunable dual⁃component polyolefin fiber mats via two⁃dimensional multilayer coextrusion [J]. Polymer, 2016, 103: 328⁃336. |
47 | WANG J, PONTING M, ZHANG C, et al. Fuel filtration properties and mechanism of a novel fibrous filter produced by a melt⁃process [J]. Journal of Membrane Science, 2017, 526: 229⁃241. |
48 | JANG K S. Exploring polyethylene/polypropylene nonwoven fabrics derived from two⁃dimensionally co⁃extruded composites: effects of delamination, consolidation, drawing and nanoparticle incorporation on mechanics, pore size and permeability[J]. Composites Science and Technology, 2018, 165: 380⁃387. |
49 | RAHMAN M A, WANG J, ZHANG C, et al. Novel micro⁃/nano⁃ porous cellular membranes by forced assembly co⁃extrusion technology[J].European Polymer Journal, 2016, 83: 99⁃113. |
50 | LI Z, OLAH A, BAER E. Micro⁃ and nano⁃layered processing of new polymeric systems [J]. Progress in Polymer Science, 2020, 102. 101210. |
51 | MUELLER C D, NAZARENKO S, EBELING T, et al. Novel structures by microlayer coextrusion⁃talc⁃filled PP, PC/SAN, and HDPE/LLDPE[J]. Polymer Engineering & Science, 2010, 37(2): 355⁃362. |
52 | ZHOU Z, CARR J, MACKEY M, et al. Interphase/interface modification on the dielectric properties of polycarbonate/poly(vinylidene fluoride⁃co⁃hexafluoropropylene) multilayer films for high⁃energy density capacitors [J]. Journal of Polymer Science Part B: Polymer Physics, 2013, 51(12): 978⁃991. |
53 | MOFIDFAR M, WANG J, LONG L, et al. Polymeric nanofiber/antifungal formulations using a novel co⁃extrusion approach [J]. AAPS PharmSciTech, 2017, 18(6): 1 917⁃1 924. |
54 | WANG J, LANGHE D, PONTING M, et al. Manufacturing of polymer continuous nanofibers using a novel co⁃extrusion and multiplication technique [J]. Polymer, 2014, 55(2): 673⁃85. |
55 | 杨卫民, 易 婷, 焦志伟, 等. 一种基于微积分层叠的熔体静电纺丝装置及方法: CN,201310593700.1 [P]. 2014⁃02⁃12. |
56 | 刘延波, 孙 健, 赵雪菲, 等. 静电纺纤维在生物医药应用领域的研究进展 [J]. 产业用纺织品, 2015, 33(9): 1⁃11. |
LIU Y B, SUN J, ZHAO X F,et al.Research progress on electrospinning fiber for biomedical applications[J]. Technical Textiles, 2015, 33(9): 1⁃11. | |
57 | TONCHEVA A, SPASOVA M, PANEVA D, et al. Polylactide (PLA)⁃based electrospun fibrous materials containing ionic drugs as wound dressing materials: a review[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63(13): 657⁃671. |
58 | SHIN C, CHASE G G. Water⁃in⁃oil coalescence in micro⁃nanofiber composite filters [J]. Aiche J, 2004, 50(2): 343⁃350. |
59 | EJAZ AHMED F, LALIA B S, HILAL N, et al. Underwater superoleophobic cellulose/electrospun PVDF–HFP membranes for efficient oil/water separation[J]. Desalination, 2014, 344:48⁃54. |
60 | 张佳敏, 罗 丹, 杨 璐, 等. PVDF/PBS纤维膜的制备及其在油水分离中的应用:基于静电纺丝 [J]. 功能材料, 2019, 50(1):5. |
ZHANG J M, LUO D, YANG L, et al. The preparation of PVDF/PBS fiber membrane and its application in oil⁃water separation:based on electrospun[J]. Journal of Functional Materials, 2019, 50(1):5. | |
61 | 侯豪情, 许文慧, 丁义纯. 高性能聚合物电纺纳米纤维最新进展 [J]. 江西师范大学学报:自然科学版, 2018, 42(6): 14. |
HOU H Q, XU W H, DING Y C. The recent progress on high⁃performance polymer nanofibers by electrospinning[J]. Journal of Jiangxi Normal University( Natural Science), 2018, 42(6): 14. | |
62 | PARK J H, RUTLEDGE G C. 50th anniversary perspective: advanced polymer fibers: high performance and ultrafine [J]. Macromolecules, 2017, 50(15): 5 627⁃5 642. |
63 | MIQUELARD⁃GARNIER G, GUINAULT A, FROMON⁃TEIL D, et al. Dispersion of carbon nanotubes in polypropylene via multilayer coextrusion: influence on the mechanical properties [J].Polymer, 2013, 54(16): 4 290⁃4 297. |
[1] | 高永红, 彭梦蜜, 金清平. 温度对玻璃纤维增强聚合物筋与混凝土黏结性能影响试验研究[J]. 中国塑料, 2022, 36(9): 16-23. |
[2] | 杨超永, 郭金强, 王富玉, 张玉霞. 高性能塑料薄膜制备方法及改性研究进展[J]. 中国塑料, 2022, 36(9): 167-179. |
[3] | 焦志伟, 王克琛, 张杨, 杨卫民. 基于碳纳米涂层沉积滑石粉与炭黑协同填充PVC/ABS复合材料的性能研究[J]. 中国塑料, 2022, 36(8): 10-15. |
[4] | 杨岩, 王杰, 李宗育, 王懿明, 王运楠, 黎水娟, 雷良才, 李海英. 超支化离子液体聚合物合成方法综述[J]. 中国塑料, 2022, 36(8): 159-165. |
[5] | 杜青, 何祎, 余坦竟, 蓝艳姣, 赵彦芝, 周菊英. 取向PAN/MWCNTs与热塑性聚烯烃复合材料的制备及表征[J]. 中国塑料, 2022, 36(8): 49-55. |
[6] | 周舒毅, 朱敏, 刘忆颖, 曹舒惠, 蔡启轩, 聂慧, 张玉霞, 周洪福. 高分子止血材料研究进展[J]. 中国塑料, 2022, 36(7): 74-84. |
[7] | 杨小龙, 陈文静, 李永青, 闫晓堃, 王修磊, 谢鹏程, 马秀清. 导电型聚合物/石墨烯复合材料的研究进展[J]. 中国塑料, 2022, 36(6): 165-173. |
[8] | 孙旗, 高兴, 崔雪梅, 连慧琴, 崔秀国, 汪晓东. 黑磷烯纳米阻燃剂研究进展[J]. 中国塑料, 2022, 36(5): 133-139. |
[9] | 田驰锋, 张洪申. 基于翅片式摩擦桶的车用聚合物粒子荷电及静电分离探索[J]. 中国塑料, 2022, 36(5): 75-80. |
[10] | 宋立健, 张有忱, 左夏华, 张政和, 安瑛, 杨卫民, 谭晶, 程礼盛. 自组装单分子层调控界面热输运的研究进展[J]. 中国塑料, 2022, 36(4): 60-69. |
[11] | 程曼芳, 白继峰, 王文清, 雷良才, 李海英, 韩向艳, 胡跃鑫. 基于超支化聚对氯甲基苯乙烯聚合离子液体共混体系的制备与表征[J]. 中国塑料, 2022, 36(3): 40-47. |
[12] | 张庭, 金清平, 宋仕娥, 曹南南, 邓思远. 不同腐蚀环境下FRP筋耐久性与寿命预测研究进展[J]. 中国塑料, 2022, 36(3): 75-81. |
[13] | 郝春波, 刘万胜, 赵欣麟, 王岩, 王月. 本体ABS用橡胶国产化替代分析及评价[J]. 中国塑料, 2022, 36(3): 89-95. |
[14] | 孙国华, 崔佳齐, 汪杨, 张信, 马劲松, 侯连龙. 耐热型聚合物锂离子电池隔膜的研究进展[J]. 中国塑料, 2022, 36(10): 190-194. |
[15] | 安瑛, 刘宇亮, 谭晶, 杨卫民, 阎华, 李好义. 聚合物离心静电纺丝技术研究进展[J]. 中国塑料, 2022, 36(1): 172-177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||