1 |
Jessop Philip G, Heldebrant David J, Li Xiaowang,et al. Reversible nonpolar⁃to⁃polar solvent[J]. Nature: International Weekly Journal of Science,2005,436(7 054):1102.
|
2 |
任冬寅,尚志新,王启宝.壳聚糖的接枝改性及其CO2/N2响应乳化性能研究[J].日用化学工业,2018,48(5):260⁃265.
|
|
REN D Y, SHANG Z X, WANG Q B. Study on the modification of chitosan and its CO2/N2⁃switchable emulsification[J]. China Surfactant Detergent & Cosmetics,2018,48(5):260⁃265.
|
3 |
任冬寅,王启宝,盖国胜. CO2开关型乳化剂的磁化改性及其破乳性能[J].中国粉体技术,2018,24(4):6⁃11,17.
|
|
REN D Y, WANG Q B, GAI G S.Magnetic modified CO2 switchable emulsifer and its demulsification capability[J].China Powder Science and Technology,2018,24(4):6⁃11,17.
|
4 |
吴学谦,张井鲁,李学成,等.利用聚二甲基硅氧烷/聚醚酰亚胺改性膜分离二氧化碳研究[J].中外能源,2022,27(9):83⁃89.
|
|
WU X Q, ZHANG J R, LI X C,et al.Study on carbon dioxi⁃de separation using modified polydimethylsiloxane/polyetherimide membranes[J]Chinese and foreign energy,2022,27(9):83⁃89.
|
5 |
张伟. 聚氨基质子型离子液体改性介孔分子筛吸附分离烟气中二氧化碳研究[D].杭州:浙江大学,2020.
|
6 |
江绍静,王维波,黄春霞,等.改性淀粉凝胶体系控制二氧化碳窜逸技术研究[J].特种油气藏,2016,23(4):136⁃139,158.
|
|
JIANG S J, WANG W B, HUANG C Xet al.Application of modified starch gel system to prevent CO2 breakthrough[J]. Special Oil & Gas Reservoirs,2016,23(4):136⁃139,158.
|
7 |
申屠佩兰.二氧化碳膜分离材料研究进展[J].能源化工,2021,42(5):27⁃32.
|
|
SHEN T P L.Research progress of carbon dioxide membrane separation materials[J].Energy Chemistry and Chemi⁃cal Engineering,2021,42(5):27⁃32.
|
8 |
李鹤,杨博,张春威,等.聚酰亚胺中空纤维膜分离二氧化碳实验研究[J].现代化工,2018,38(10):188⁃191.
|
|
LI H, YANG B, ZHANG C Wet al.Experimental study on carbon dioxide recovery by polyimide hollow fiber membrane[J].Modern Chemical Industry,2018,38(10):188⁃191.
|
9 |
樊栓狮,尤莎莉,郎雪梅,等.笼型水合物膜分离和捕获二氧化碳研究进展[J].化工进展,2020,39(4):1 211⁃1 218.
|
|
FAN S S, YOU S L, LANG X Met al.Separation and capture carbon dioxide by clathrate⁃hydrate membranes:a re⁃wiew[J].Chemical Industry and Engineering,2020,39(4):1 211⁃1 218.
|
10 |
曾小平,刘璨,郝玉鹏,等.聚丙烯酰胺/聚甲基丙烯酸(2⁃甲基氨基)乙酯高强度双网络水凝胶的制备及pH响应性[J].高分子材料科学与工程,2021,37(5):87⁃92.
|
|
ZENG X P, LIU C, HAO Y Pet al.Preparation and pH sensitivity of polyacrylamide/poly(2⁃methylamino) ethyl metha⁃crylate high strength double network hydrogel[J].Polymer Materials Science & Engineering,2021,37(5):87⁃92.
|
11 |
廖列文,刘正堂,岳航勃,等.AMPS/DMAEMA共聚水凝胶合成与性能[J].科技导报,2008,26(24):69⁃72.
|
|
LIAO L W, LIU Z T, YUE H Bet al.Synthesis of poly(AMPS⁃Co⁃DMAEMA) and their properties[J].Science and Technology Review,2008,26(24):69⁃72.
|
12 |
Tong Shen, Zhong Lina, Liu Xiaohui,et al. Decorating Au nanoparticles onto optimized p(tBA‐co‐DMAEMA) carriers for ameliorative catalytic capability[J]. Journal of Applied Polymer Science,2020,137(31):1⁃11.
|
13 |
Zhang M, Zhao T, Yu C, et al. Amphiphilic Pd@ micro⁃organohydrogels with controlled wettability for enhancing gas⁃liquid⁃solid triphasic catalytic performance[J]. Nano Research, 2022, 15(1): 557⁃563.
|
14 |
Hu Guowen, Yu Wang, Ma Jun,et al. A novel amphoteric ion exchange membrane synthesized by radiation⁃induced grafting α⁃methylstyrene and N,N⁃dimethylaminoethyl methacrylate for vanadium redox flow battery application[J]. Journal of Membrane Science,2012:407⁃408.
|
15 |
Xie Kangjun, Zhen Dong, Wang Yicheng,et al. Facile Preparation of EVOH⁃based amphoteric ion exchange membrane using radiation grafting technique: a preliminary investigation on its application for vanadium redox flow battery[J]. Polymers,2019,11(5):843.
|
16 |
Karthika J S, Vishalakshi B. Novel stimuli responsive gellan gum⁃graft⁃poly(DMAEMA) hydrogel as adsorbent for anionic dye[J]. International Journal of Biological Macromolecules,2015:81:648⁃655.
|
17 |
Eswaramma S, Sivagangi Reddy N, Krishna Rao K S V. Phosphate crosslinked pectin based dual responsive hydrogel networks and nanocomposites: Development, swelling dynamics and drug release characteristics[J]. International Journal of Biological Macromolecules,2017,103: 1 162⁃1 172.
|
18 |
Jan Erfkamp, Margarita Guenther, Gerald Gerlach. Piezoresistive hydrogel⁃based sensors for the detection of ammonia[J]. Sensors,2019,19(4):971.
|
19 |
Jian Tian, Wei Junfu, Huan Zhang,et al. Graphene oxide⁃functionalized dual⁃scale channels architecture for high⁃throughput removal of organic pollutants from water[J]. Chemical Engineering Journal,2018,359:852⁃862.
|
20 |
肖卫鹏,徐梓轩,崔跃飞,等.羟丙基淀粉/DMAEMA接枝共聚物的合成与表征[J].仲恺农业工程学院学报,2021,34(1):31⁃35.
|
|
XIAO W P, XUN Z X, CUI Y Fet al.Synthesis and charaterization of grafted polymer of DEAEMA onto hydroxypropyl starch[J].Journal of ZhongKai University of Agriculture and Technology,2021,34(1):31⁃35.
|
21 |
Qi Liang, Luo Zhigang, Lu Xuanxuan. Facile synthesis of starch⁃based nanoparticle stabilized Pickering emulsion: its pH⁃responsive behavior and application for recyclable catalysis[J]. Green Chemistry,2018,20(7):1 538⁃1 550.
|
22 |
Su Yanlei, Chao Li. Tunable water flux of a weak polye⁃lectrolyte ultrafiltration membrane[J]. Journal of Membrane Science,2007,305(1):271⁃278.
|
23 |
Yuan Weizhong, Wang Chunyao, Lei Shize,et al. Ultravio⁃let light⁃, temperature⁃ and pH⁃responsive fluorescent sensors based on cellulose nanocrystals[J]. Polymer Chemistry,2018,9(22):3 098⁃3 107.
|
24 |
Dhuiège Benjamin, Lasseuguette Elsa, Brochier⁃Salon Marie⁃Christine,et al. Crosslinked facilitated transport membranes based on carboxymethylated NFC and amine⁃based fixed carriers for carbon capture, utilization, and storage applications[J]. Applied Sciences,2020,10(1):414.
|
25 |
Wu Shaopeng, Zhu Xiaoqun, Yang Jinliang,et al. A facile photopolymerization method for fabrication of pH and light dual reversible stimuli⁃responsive surfaces[J]. Chemical communications,2015,51(26):5 649⁃5 651.
|