
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2023, Vol. 37 ›› Issue (10): 93-100.DOI: 10.19491/j.issn.1001-9278.2023.10.013
孙颖1,2(), 白林1, 刘明昊1, 翁云宣1,2(
), 陈礼平3
收稿日期:
2023-09-05
出版日期:
2023-10-26
发布日期:
2023-10-23
通讯作者:
翁云宣(1972—),男,教授,从事生物基材料及环境友好高分子材料研究,wyxuan@th.btbu.edu.cn作者简介:
孙颖(1991—),女,实验师,从事食品接触材料及环境友好高分子材料研究,btbusunying@163.com
基金资助:
SUN Ying1,2(), BAI Lin1, LIU Minghao1, WENG Yunxuan1,2(
), CHEN Liping3
Received:
2023-09-05
Online:
2023-10-26
Published:
2023-10-23
Contact:
WENG Yunxuan
E-mail:btbusunying@163.com;wyxuan@th.btbu.edu.cn
摘要:
以蓝莓为研究对象,利用双螺杆挤出机和流延机制备聚乙醇酸(PGA)/聚对苯二甲酸‑己二酸丁二酯(PBAT)生物降解复合膜,以酶活为考核指标,探究了不同复合膜对蓝莓保鲜品质的影响。以热失重、气体透过率、气体组成表征保鲜膜质量。结果表明,60%PGA/40%PBAT组可以有效抑制多酚氧化酶(PPO)活性含量升高,延缓抗坏血酸过氧化物酶(APX)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性降低,PGA组延缓过氧化物酶(POD)活性和pH值降低;因此,PGA和PBAT复配后的生物降解保鲜膜更有利于蓝莓的保鲜,尤其是60%PGA/40%PBAT保鲜膜,其CO2的体积分数可以控制在 2 %~3 %之内,而O2的体积分数则会因为储存的时长而不断下降,达到10 %~12 %;保存6天后酶活分别为:PPO为3.42 U/g、APX为5.98 U/g、SOD为8.37 U/g、POD为81.12 U/g、CAT为115.78 U/g。
中图分类号:
孙颖, 白林, 刘明昊, 翁云宣, 陈礼平. 生物聚酯保鲜膜的制备及其保鲜效果比较[J]. 中国塑料, 2023, 37(10): 93-100.
SUN Ying, BAI Lin, LIU Minghao, WENG Yunxuan, CHEN Liping. Preparation and freshness preservation effect of biopolyester freshness preservation film[J]. China Plastics, 2023, 37(10): 93-100.
可生物降解聚酯保鲜膜 | 回归方程 | R2 | Af | Bf | SSS | RRMSE |
---|---|---|---|---|---|---|
对照 | y=-0.305 2x2+2.474x+1.113 | 0.920 2 | 1.06 | 1.00 | 0.02 | 0.31 |
80%PGA/20%PBAT | y=-0.295 5x2+2.142 2x+1.243 | 0.949 1 | 1.03 | 1.00 | 0.01 | 0.19 |
20%PGA/80%PBAT | y=-0.313 4x2+2.447 5x+1.107 | 0.912 3 | 1.06 | 1.00 | 0.02 | 0.30 |
60%PGA/40%PBAT | y=-0.278 8x2+2.005x+1.337 | 0.967 0 | 1.03 | 1.00 | 0.00 | 0.14 |
PBAT | y=-0.345 7x2+2.483 1x+0.974 | 0.933 1 | 1.04 | 1.00 | 0.01 | 0.25 |
PGA | y=-0.306 6x2+2.454 3x+1.087 | 0.928 7 | 1.05 | 1.00 | 0.02 | 0.28 |
可生物降解聚酯保鲜膜 | 回归方程 | R2 | Af | Bf | SSS | RRMSE |
---|---|---|---|---|---|---|
对照 | y=-0.305 2x2+2.474x+1.113 | 0.920 2 | 1.06 | 1.00 | 0.02 | 0.31 |
80%PGA/20%PBAT | y=-0.295 5x2+2.142 2x+1.243 | 0.949 1 | 1.03 | 1.00 | 0.01 | 0.19 |
20%PGA/80%PBAT | y=-0.313 4x2+2.447 5x+1.107 | 0.912 3 | 1.06 | 1.00 | 0.02 | 0.30 |
60%PGA/40%PBAT | y=-0.278 8x2+2.005x+1.337 | 0.967 0 | 1.03 | 1.00 | 0.00 | 0.14 |
PBAT | y=-0.345 7x2+2.483 1x+0.974 | 0.933 1 | 1.04 | 1.00 | 0.01 | 0.25 |
PGA | y=-0.306 6x2+2.454 3x+1.087 | 0.928 7 | 1.05 | 1.00 | 0.02 | 0.28 |
可生物降解聚酯保鲜膜 | 回归方程 | R2 | Af | Bf | SSS | RRMSE |
---|---|---|---|---|---|---|
对照 | y=-0.120 2x2-0.091 3x+9.839 | 0.917 5 | 1.06 | 1.00 | 0.02 | 0.53 |
80%PGA/20%PBAT | y=-0.220 4x2+0.691 6x+9.168 | 0.926 2 | 1.04 | 1.00 | 0.01 | 0.48 |
20%PGA/80%PBAT | y=-0.199 6x2+0.462 6x+9.382 | 0.929 9 | 1.05 | 1.00 | 0.02 | 0.50 |
60%PGA/40%PBAT | y=-0.275 5x2+1.144 5x+8.795 | 0.915 9 | 1.04 | 1.00 | 0.01 | 0.50 |
PBAT | y=-0.199 1x2+0.507 8x+9.351 | 0.922 2 | 1.05 | 1.00 | 0.02 | 0.51 |
PGA | y=-0.215 4x2+0.671 2x+9.202 | 0.917 8 | 1.04 | 1.00 | 0.01 | 0.50 |
可生物降解聚酯保鲜膜 | 回归方程 | R2 | Af | Bf | SSS | RRMSE |
---|---|---|---|---|---|---|
对照 | y=-0.120 2x2-0.091 3x+9.839 | 0.917 5 | 1.06 | 1.00 | 0.02 | 0.53 |
80%PGA/20%PBAT | y=-0.220 4x2+0.691 6x+9.168 | 0.926 2 | 1.04 | 1.00 | 0.01 | 0.48 |
20%PGA/80%PBAT | y=-0.199 6x2+0.462 6x+9.382 | 0.929 9 | 1.05 | 1.00 | 0.02 | 0.50 |
60%PGA/40%PBAT | y=-0.275 5x2+1.144 5x+8.795 | 0.915 9 | 1.04 | 1.00 | 0.01 | 0.50 |
PBAT | y=-0.199 1x2+0.507 8x+9.351 | 0.922 2 | 1.05 | 1.00 | 0.02 | 0.51 |
PGA | y=-0.215 4x2+0.671 2x+9.202 | 0.917 8 | 1.04 | 1.00 | 0.01 | 0.50 |
可生物降解聚酯保鲜膜 | 回归方程 | R2 | Af | Bf | SSS | RRMSE |
---|---|---|---|---|---|---|
对照 | y=-1.018 9x+13.433 | 0.983 6 | 1.02 | 1.00 | 0.00 | 0.25 |
80%PGA/20%PBAT | y=-0.808 3x+13.134 | 0.997 8 | 1.01 | 1.00 | 0.00 | 0.07 |
20%PGA/80%PBAT | y=-0.846 9x+13.244 | 0.997 2 | 1.01 | 1.00 | 0.00 | 0.08 |
60%PGA/40%PBAT | y=-0.737 7x+13.335 | 0.927 5 | 1.03 | 1.00 | 0.01 | 0.39 |
PBAT | y=-0.843 1x+13.186 | 0.996 6 | 1.01 | 1.00 | 0.00 | 0.09 |
PGA | y=-0.865 1x+13.221 | 0.999 0 | 1.00 | 1.00 | 0.00 | 0.05 |
可生物降解聚酯保鲜膜 | 回归方程 | R2 | Af | Bf | SSS | RRMSE |
---|---|---|---|---|---|---|
对照 | y=-1.018 9x+13.433 | 0.983 6 | 1.02 | 1.00 | 0.00 | 0.25 |
80%PGA/20%PBAT | y=-0.808 3x+13.134 | 0.997 8 | 1.01 | 1.00 | 0.00 | 0.07 |
20%PGA/80%PBAT | y=-0.846 9x+13.244 | 0.997 2 | 1.01 | 1.00 | 0.00 | 0.08 |
60%PGA/40%PBAT | y=-0.737 7x+13.335 | 0.927 5 | 1.03 | 1.00 | 0.01 | 0.39 |
PBAT | y=-0.843 1x+13.186 | 0.996 6 | 1.01 | 1.00 | 0.00 | 0.09 |
PGA | y=-0.865 1x+13.221 | 0.999 0 | 1.00 | 1.00 | 0.00 | 0.05 |
可生物降解聚酯保鲜膜 | 回归方程 | R2 | Af | Bf | SSS | RRMSE |
---|---|---|---|---|---|---|
对照 | y=-1.580 4x2+11.341x+59.864 | 0.911 5 | 1.01 | 1.00 | 0.00 | 1.35 |
80%PGA/20%PBAT | y=-2.182 9x2+16.808x+56.198 | 0.952 2 | 1.01 | 1.00 | 0.00 | 1.48 |
20%PGA/80%PBAT | y=-2.149 6x2+15.986x+56.524 | 0.980 5 | 1.01 | 1.00 | 0.00 | 0.86 |
60%PGA/40%PBAT | y=-2.068 2x2+16.257x+56.808 | 0.945 0 | 1.02 | 1.00 | 0.00 | 1.58 |
PBAT | y=-1.473 2x2+10.887x+60.834 | 0.926 5 | 1.01 | 1.00 | 0.00 | 1.17 |
PGA | y=-1.879 6x2+13.937x+57.086 | 0.957 3 | 1.01 | 1.00 | 0.00 | 1.13 |
可生物降解聚酯保鲜膜 | 回归方程 | R2 | Af | Bf | SSS | RRMSE |
---|---|---|---|---|---|---|
对照 | y=-1.580 4x2+11.341x+59.864 | 0.911 5 | 1.01 | 1.00 | 0.00 | 1.35 |
80%PGA/20%PBAT | y=-2.182 9x2+16.808x+56.198 | 0.952 2 | 1.01 | 1.00 | 0.00 | 1.48 |
20%PGA/80%PBAT | y=-2.149 6x2+15.986x+56.524 | 0.980 5 | 1.01 | 1.00 | 0.00 | 0.86 |
60%PGA/40%PBAT | y=-2.068 2x2+16.257x+56.808 | 0.945 0 | 1.02 | 1.00 | 0.00 | 1.58 |
PBAT | y=-1.473 2x2+10.887x+60.834 | 0.926 5 | 1.01 | 1.00 | 0.00 | 1.17 |
PGA | y=-1.879 6x2+13.937x+57.086 | 0.957 3 | 1.01 | 1.00 | 0.00 | 1.13 |
可生物降解聚酯保鲜膜 | 回归方程 | R2 | Af | Bf | SSS | RRMSE |
---|---|---|---|---|---|---|
对照 | y=-0.377 1x2+2.622 9x+110.62 | 0.933 2 | 1.00 | 1.00 | 0.00 | 0.28 |
80%PGA/20%PBAT | y=-1.759 3x2+12.567x+102.17 | 0.979 2 | 1.00 | 1.00 | 0.00 | 1.28 |
20%PGA/80%PBAT | y=-0.904 6x2+6.430 8x+107.22 | 0.928 8 | 1.00 | 1.00 | 0.00 | 0.69 |
60%PGA/40%PBAT | y=-1.689 8x2+12.634x+100.7 | 0.913 5 | 1.01 | 1.00 | 0.00 | 1.49 |
PBAT | y=-0.806 8x2+5.775 2x+107.69 | 0.910 3 | 1.00 | 1.00 | 0.00 | 0.70 |
PGA | y=-1.245x2+8.775 3x+105.43 | 0.945 6 | 1.01 | 1.00 | 0.00 | 0.82 |
可生物降解聚酯保鲜膜 | 回归方程 | R2 | Af | Bf | SSS | RRMSE |
---|---|---|---|---|---|---|
对照 | y=-0.377 1x2+2.622 9x+110.62 | 0.933 2 | 1.00 | 1.00 | 0.00 | 0.28 |
80%PGA/20%PBAT | y=-1.759 3x2+12.567x+102.17 | 0.979 2 | 1.00 | 1.00 | 0.00 | 1.28 |
20%PGA/80%PBAT | y=-0.904 6x2+6.430 8x+107.22 | 0.928 8 | 1.00 | 1.00 | 0.00 | 0.69 |
60%PGA/40%PBAT | y=-1.689 8x2+12.634x+100.7 | 0.913 5 | 1.01 | 1.00 | 0.00 | 1.49 |
PBAT | y=-0.806 8x2+5.775 2x+107.69 | 0.910 3 | 1.00 | 1.00 | 0.00 | 0.70 |
PGA | y=-1.245x2+8.775 3x+105.43 | 0.945 6 | 1.01 | 1.00 | 0.00 | 0.82 |
可生物降解聚酯保鲜膜 | CO2透过率/cm3·m·(m2·d·Pa)-1 | O2透过率/cm3·m·(m2·d·Pa)-1 | CO2/O2 选择透过比 |
---|---|---|---|
空白 | - | - | - |
80%PGA/20%PBAT | 80.34±2.21 | 8.57±0.72 | 9.4 |
20%PGA/80%PBAT | 89.21±2.72 | 8.86±0.59 | 10.1 |
60%PGA/40%PBAT | 82.02±1.61 | 8.53±0.46 | 9.6 |
PBAT | 93.67±3.75 | 8.82±0.55 | 10.6 |
PGA | 25.75±1.28 | 7.11±0.22 | 3.6 |
可生物降解聚酯保鲜膜 | CO2透过率/cm3·m·(m2·d·Pa)-1 | O2透过率/cm3·m·(m2·d·Pa)-1 | CO2/O2 选择透过比 |
---|---|---|---|
空白 | - | - | - |
80%PGA/20%PBAT | 80.34±2.21 | 8.57±0.72 | 9.4 |
20%PGA/80%PBAT | 89.21±2.72 | 8.86±0.59 | 10.1 |
60%PGA/40%PBAT | 82.02±1.61 | 8.53±0.46 | 9.6 |
PBAT | 93.67±3.75 | 8.82±0.55 | 10.6 |
PGA | 25.75±1.28 | 7.11±0.22 | 3.6 |
1 | WANG H L, GUO X B, HU X D, et al. Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (vaccinium spp)[J]. Food Chemistry, 2017, 217:773⁃781. |
2 | 赵红宇, 关文凤, 周盛华,等. 羧甲基纤维素壳聚糖复合膜对蓝莓保鲜效果的研究[J]. 农产品加工, 2022, 554(12): 5⁃9. |
ZHAO H Y, GUAN W F, ZHOU S H. Study on effects of the preservation of blueberry by carboxymethyl cellulose⁃chitosan films[J]. Farm Products Processing, 2022, 554(12): 5⁃9. | |
3 | 梁晓云, 赵王晨, 张 晨,等. 壳聚糖/EGCG@MNPS纳米复合包装对低温和常温贮藏蓝莓保鲜效果的影响[J]. 食品工业科技, 2022, 43(24): 268⁃279. |
LIANG X Y, ZHAO W C, ZHANG C,et al. Effects of chitosan/EGCG@MNPs nanocomposite packaging on preservation of blueberries stored at low temperature and normal temperature[J]. Science and Technology of Food Industry, 2022, 43(24): 268⁃279. | |
4 | ZHENG Z Q, CHEN J H, TIAN W, et al. Finite element analysis of blueberry stack damage[J]. Journal of Food Process Engineering, 2021, 44. |
5 | WANG L, ZHANG X X, ZHAO Y L, et al. Effect of treatment with 1⁃methylcyclopropene or ethylene absorbent on the quality of hawthorn fruits during controlled freezing⁃point storage[J]. Food Science, 2018, 39(23): 243⁃249. |
6 | XING S H, ZHANG X S, GONG H S. The effect of CO2 concentration on sweet cherry preservation in modified atmosphere packaging title not given[J]. Czech Journal of Food Sciences, 2020, 38(2): 103⁃108. |
7 | 陈孟雅. 低能微波和减压处理对巨峰葡萄抗氧化及软化的影响[D]. 合肥:安徽农业大学, 2018. |
8 | 金 童. 1⁃甲基环丙烯(1⁃MCP)和二氧化氯联合使用对果蔬采后品质的影响[D]. 济南:齐鲁工业大学, 2019. |
9 | ASGHER M, QAMAR S A, BILAL M, et al. Bio⁃based active food packaging materials: sustainable alternative to conventional petrochemical-based packaging materials[J]. Food Research International, 2020, 137: 109625. |
10 | 唐海兵. 活性PLA/PHA包装薄膜对冷藏保鲜河豚鱼片品质及风味的影响研究[D]. 上海:上海海洋大学, 2020. |
11 | ZHANG W Y, SUN D W, MA J, et al. Simultaneous sensing of ammonia and temperatures using a dual⁃mode freshness indicator based on Au/Cu nanoclusters for packaged seafood[J]. Food Chemistry, 2023, 418: 135929. |
12 | 国崇文, 魏宝东, 张 鹏,等. PE包装对西兰花贮藏品质的影响[J]. 保鲜与加工, 2020, 20(1): 53⁃59. |
GUO C W, WEI B D, ZHANG P, et al. Effect of PE packaging on the storage quality of broccoli[J]. Storage and Process, 2020, 20(1): 53⁃59. | |
13 | 万 哲, 卢立新, 丘晓琳. 胺基载体选择性渗透膜对西兰花品质的影响[J]. 包装工程, 2017, 38(17): 8⁃12. |
WAN Z, LU L X, QIU X L. Effects of perm⁃selective membranes of amine carrier on quality of broccoli[J]. Packaging Engineering, 2017, 38(17): 8⁃12. | |
14 | INDUMATHI M P, SAROJINI K S, RAJARAJESWARI G R. Antimicrobial and biodegradable chitosan/cellulose acetate phthalate/ZnO nano composite films with optimal oxygen permeability and hydrophobicity for extending the shelf life of black grape fruits[J]. International Journal of Biological Macromolecules, 2019. 132: 1 112⁃1 120. |
15 | SONG T Y, QIAN S, LAN T T, et al. Recent advances in bio⁃based smart active packaging materials[J]. Foods, 2022, 11:2 221⁃2 228. |
16 | KHALID M Y, ARIF Z U. Novel biopolymer⁃based sustainable composites for food packaging applications: a narrative review[J]. Food Packaging and Shelf Life, 2022, 33: 100892. |
17 | SANI M A, AZIZI⁃LALABADI M, TAVASSOLI M, et al. Recent advances in the development of smart and active biodegradable packaging materials[J]. Nanomaterials, 2021, 11: 1 331⁃1 339. |
18 | 李新明, 郭霄飞, 郭 尚. 壳聚糖/淀粉/苹果多酚复合膜对双孢蘑菇保鲜效果的影响[J]. 北方园艺, 2022(15): 98⁃105. |
LI X M, GUO X F, GUO S. Effects of chitosan/starch/apple polyphenol composite film on fresh⁃keeping effect of Agaricus bisporus [J]. Northern Horticulture, 2022(15): 98⁃105. | |
19 | QIU S, ZHOU Y K, GONG R Z, et al. Optimizing interfacial adhesion in PBAT/PLA nanocomposite for biodegradable packaging films[J]. Food Chemistry, 2021, 334: 127487. |
20 | DE SOUZA A G, BARBOSA R F D, QUISPE Y M, et al. Essential oil microencapsulation with biodegradable polymer for food packaging application[J]. Journal of Polymers and the Environment, 2022, 30: 3 307⁃3 315. |
21 | SAMANTARAY P K, LITTLE A, HADDLETON D M, et al. Poly(glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications[J]. Green Chemistry, 2020, 22:4 055⁃4 081. |
22 | LI C T, CUI Q, LI Y, et al. Effect of LDPE and biodegradable PBAT primary microplastics on bacterial community after four months of soil incubation[J]. Journal of Hazardous Materials, 2022, 429: 128353. |
23 | 刘莎莎. O2/CO2主动自发气调对平菇保鲜效果的影响[D]. 淄博:山东理工大学, 2019. |
24 | 商立超. 一种双孢菇复合生物保鲜剂的研制及保鲜效果研究[D]. 泰安:山东农业大学, 2022. |
25 | 王磊明. 蓝莓鲜果冷链贮藏保鲜技术研究[D]. 哈尔滨:东北林业大学, 2018. |
26 | 黄玉咪. 采前和采后EVA与CTS涂膜对芒果保鲜效果的影响[D]. 南宁:广西大学, 2021. |
27 | 刘倩. 孜然、花椒、肉桂精油复配对冷鲜羊肉保鲜效果的研究[D]. 兰州:甘肃农业大学, 2019. |
28 | 谢文佩, 章 昱. 广西大宗特色水果果皮酵素的制备及其抗氧化作用研究[J]. 保鲜与加工, 2021, 21(5): 75⁃80. |
XIE W P, ZHANG Y. Preparation and antioxidant activity of enzymes from distinguishing fruits peels of guangxi[J]. Storage and Process, 2021, 21(5): 75⁃80. | |
29 | 曹 森, 吉 宁, 巴良杰,等. 采前喷施保鲜剂对蓝莓贮藏品质的影响[J]. 食品与机械, 2020, 36(5): 146⁃150. |
CAO S, JI N, BA L J, et al. Effects of pre⁃ harvet different preservatives spraying on postharvest storage quality of blueberry[J]. Food and Mechinery, 2020,36(5): 146⁃150. | |
30 | 徐 斌, 安路明, 孟新涛,等. 外源腐胺(Put)处理对黄皮甜瓜果实采后冷害及活性氧代谢的影响[J]. 食品工业科技, 2022, 43(21): 360⁃367. |
XU B, AN L M, MENG X T, et al. Effect of exogenous putrescine (Put) treatments on postharvest chilling injury and reactive oxygen metabolism of yellow melon fruits[J]. Science and Technology of Food Industry, 2022, 43(21): 360⁃367. | |
31 | 张瑜瑜,陈泽斌,用成健,等. 外源水杨酸处理对蓝莓采后生理及贮藏品质的影响[J]. 西南农业学报, 2022, 35(1): 168⁃175. |
ZHANG Y Y, CHEN Z B, YONG C J, et al. Effects of exogenous SA treatment on postharvest physiology and storage quality of blueberries[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(1): 168⁃175. | |
32 | 张茂栖, 罗 薇, 蔡丽莎,等. 水果副产物抗氧化活性及其在猪肉保鲜中的应用[J]. 江苏农业学报, 2021, 37(3): 800⁃807. |
ZHANG M Q, LUO W, CAI L S, et al. Antioxidant activity of fruit by⁃products and their application in pork preservation[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(3): 800⁃807. | |
33 | 佟俊生, 李晓平, 陶 烨,等. 不同剂量60Co γ辐照对蓝莓果实抗氧化性及相关酶活性的影响[J]. 农业科技与装备, 2017(6): 26⁃29. |
TONG J S, LI X P, TAO Y, et al. Influence of different 60Co γ⁃irradiation doses on antioxidant and relative enzyme activities of blueberry fruits[J]. Agricultural Science and Technology and Equipment, 2017(6): 26⁃29. | |
34 | 吴媛媛. 灰霉侵染对蓝莓采后果实蜡质及抗氧化活性的影响[D]. 南京:南京农业大学, 2019. |
35 | 吴志明, 鹿承建, 章帅文,等. 新型Streptomyces sp. N2代谢粗提物的抑菌活性及其水果保鲜初探[J]. 西南农业学报, 2018, 31(7): 1 393⁃1 398. |
WU Z M, LU C J, ZHANG S W, et al. Inhibitory activities of metabolite produced by streptomyces sp. N2 and its efficacy on fruit storage[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(7): 1 393⁃1 398. | |
36 | 王洪琳, 王 瑞, 苏 伟. 不同厚度保鲜膜处理对蓝莓鲜果采后贮藏品质的影响研究[J]. 山地农业生物学报, 2019, 38(4): 70⁃75. |
WANG H L, WANG R, SU W. Effects of different plastic wrap treatments on the quality of postharvest storage of blueberry fruits[J].Journal of Mountain Agriculture and Biology, 2019, 38(4): 70⁃75. | |
37 | 于弘弢. 微环境气调对蓝莓品质变化的调控作用[D]. 沈阳:辽宁大学, 2021. |
[1] | 赵儒硕, 谭晶, 杨卫民, 缪顺福, 闵云杰, 程礼盛, 何雪涛. 水对聚丙烯腈溶液热致变凝胶化的微观促进机理研究[J]. 中国塑料, 2023, 37(9): 1-7. |
[2] | 翟永怡, 李瑞丽, 卜禹豪, 姬娅茹. Mg掺杂UiO⁃66的制备及其塑料油品脱氯性能[J]. 中国塑料, 2023, 37(2): 62-70. |
[3] | 朱光泽, 周炜, 夏志东, 王晓露, 李炳毅, 郭福, 吴玉锋. 有机废弃物热解分析技术现状与展望[J]. 中国塑料, 2023, 37(11): 101-116. |
[4] | 孙颖 白林 刘明昊 翁云宣 陈礼平. 生物聚酯保鲜膜的制备及其保鲜效果比较[J]. , 2023, 37(10): 93-100. |
[5] | 熊一鸣, 宋季岭, 秦舒浩, 龙雪彬, 鲁显睿. 改性热塑性淀粉的制备及其与PBAT复合薄膜的性能[J]. 中国塑料, 2022, 36(8): 69-72. |
[6] | 汤元君, 李璇, 董隽, 李国能, 罗冠群, 王卫民, 许友生. 废弃PVC塑料热解过程多尺度反应动力学特性研究[J]. 中国塑料, 2022, 36(5): 89-98. |
[7] | 李永青, 杨小龙, 陈文静, 闫晓堃, 马秀清. 改性剂及高密度聚乙烯插层和剥离蒙脱石的分子动力学模拟[J]. 中国塑料, 2022, 36(2): 67-74. |
[8] | 刘振, 余云, 张孟航, 尹浏烨, 段雨霏, 侯桂香. 没食子酸环氧树脂/蓖麻油酸多胺体系固化动力学及性能[J]. 中国塑料, 2022, 36(2): 75-81. |
[9] | 张泽文, 朱恩赐, 张熙祥, 魏丽娟, 赵世成. 两种羧酸盐成核剂的制备及其对聚丙烯的成核效果研究[J]. 中国塑料, 2022, 36(12): 100-107. |
[10] | 陈聪博, 范烁, 张锐, 李辉, 罗思琪, 任伊锦. PVDF/PMMA共混物非等温结晶动力学和晶体结构[J]. 中国塑料, 2022, 36(11): 59-66. |
[11] | 王志伟, 吴梦鸽, 陈颜, 郭帅华, 李甜甜, 赵俊廷, 李辉, 雷廷宙. 生物质与塑料共热解协同特性研究进展[J]. 中国塑料, 2022, 36(10): 149-158. |
[12] | 周阳, 赵世坤, 赵彪, 刘会鹏, 黎杰, 曹志文, 潘凯. 半芳香族聚酰胺6T/6I/6的合成及其非等温结晶动力学研究[J]. 中国塑料, 2022, 36(10): 15-22. |
[13] | 张丁然, 卢林刚. 基于TG分析的杯[8]芳烃热解机理与动力学分析[J]. 中国塑料, 2022, 36(1): 92-99. |
[14] | 张丁然, 卢林刚. 杯[4]芳烃的热分解动力学研究[J]. 中国塑料, 2021, 35(9): 27-33. |
[15] | 矫佳利, 杨卫民, 高晓东, 宋立健, 丁玉梅, 程礼盛. 回收聚乙烯模板法制备碳纤维的机理分析[J]. 中国塑料, 2021, 35(8): 94-99. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||