
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (2): 52-60.DOI: 10.19491/j.issn.1001-9278.2024.02.009
收稿日期:
2023-12-28
出版日期:
2024-02-26
发布日期:
2024-02-03
通讯作者:
许博(1982—),男,教授,从事阻燃材料研究,xubo@btbu.edu.cn
JIA Meng1, XU Zhun2, WEI Simiao1, ZHANG Qinglei1, XU Bo1()
Received:
2023-12-28
Online:
2024-02-26
Published:
2024-02-03
Contact:
XU Bo
E-mail:xubo@btbu.edu.cn
摘要:
综述了近5年来建筑用泡沫材料阻燃的研究进展,重点介绍了聚氨酯泡沫材料、酚醛泡沫材料及气凝胶材料,并对其阻燃机理进行了概述,最后指出了环境友好阻燃泡沫材料是未来发展的方向。
中图分类号:
贾梦, 许准, 魏思淼, 张庆磊, 许博. 建筑用泡沫材料阻燃研究进展[J]. 中国塑料, 2024, 38(2): 52-60.
JIA Meng, XU Zhun, WEI Simiao, ZHANG Qinglei, XU Bo. Research progress in flame⁃retardant foam materials for construction[J]. China Plastics, 2024, 38(2): 52-60.
芯层 | 热导率/W·m2·K-1 | 表观密度/kg·m-3 | 燃烧级别 |
---|---|---|---|
岩棉 | ≤0.040 | ≥100 | A |
模塑聚苯乙烯泡沫 | ≤0.041 | 18~22 | B1/B2 |
挤塑聚苯乙烯泡沫 | ≤0.030 | 28~35 | B1/B2 |
聚氨酯泡沫 | ≤0.024 | ≥35 | B1 |
芯层 | 热导率/W·m2·K-1 | 表观密度/kg·m-3 | 燃烧级别 |
---|---|---|---|
岩棉 | ≤0.040 | ≥100 | A |
模塑聚苯乙烯泡沫 | ≤0.041 | 18~22 | B1/B2 |
挤塑聚苯乙烯泡沫 | ≤0.030 | 28~35 | B1/B2 |
聚氨酯泡沫 | ≤0.024 | ≥35 | B1 |
1 | 郑凯, 雷震霆, 汤建庭, 等. 建筑物保温材料的研究和展望[J]. 建筑技术, 2023, 54(13): 1 620⁃1 625. |
ZHENG K, LEI Z T, TANG J T,et al. Research and prospect of insulation materials for buildings[J]. Architecture Technology, 2023, 54(13): 1 620⁃1 625. | |
2 | 金建旭. 节能材料在建筑设计中的应用探析[J]. 佛山陶瓷, 2023, 33(04): 116⁃168. |
JIN J X. An analysis of the application of energy⁃saving materials in architectural design[J]. Foshan Ceramics, 2023, 33(04): 116⁃168. | |
3 | 杨树娥, 刘素芹, 麻炳辉. 用于建筑外墙保温材料阻燃剂溴化SBS的研究进展 [J]. 盐科学与化工, 2021, 50(08): 5⁃7. |
YANG S E, LIU S Q, MA B H. Research progress of Br⁃SBS as a flame retardant for heat insulatormaterials of buildings’ exterior wall[J]. Journal of Salt Science and Chemical Industry, 2021, 50(08): 5⁃7. | |
4 | YADAV A, DE SOUZA F M, DAWSEY T, et al. Recent advancements in flame⁃retardant polyurethane foams: a review [J]. Industrial & Engineering Chemistry Research, 2022, 61(41): 15 046⁃15 065. |
5 | DSOUZA G C, NG H, CHARPENTIER P, et al. Recent developments in biobased foams and foam composites for construction applications [J]. ChemBioEng Reviews, 2023, 10:1⁃33. |
6 | VAHABI H, RASTIN H, MOVAHEDIFAR E, et al. Flame retardancy of bio⁃based polyurethanes: opportunities and challenges [J]. Polymers, 2020, 12(6): 1234. |
7 | POPPENDIECK D, GONG M, NG L, et al. Applicability of spray polyurethane foam ventilation guidelines for do⁃it⁃yourself application events [J]. Building and Environment, 2019, 157: 227⁃34. |
8 | SONI D B, BHATT G. A Review on flame retardants used in polyurethane foam [J]. ECS Transactions, 2022, 107(1): 1153. |
9 | ZHU H, XU S. Preparation of flame⁃retardant rigid polyurethane foams by combining modified melamine–formaldehyde resin and phosphorus flame retardants [J]. ACS Omega, 2020, 5(17): 9 658⁃9 667. |
10 | WANG S, WANG S, SHEN M, et al. Biobased phosphorus siloxane⁃containing polyurethane foam with flame⁃retardant and smoke⁃suppressant performances [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(25): 8 623⁃8 634. |
11 | WANG J, XU B, WANG X, et al. A phosphorous⁃based bi⁃functional flame retardant for rigid polyurethane foam [J]. Polymer Degradation and Stability, 2021, 186: 109516. |
12 | WU N, NIU F, LANG W, et al. Synthesis of reactive phenylphosphoryl glycol ether oligomer and improved flame retardancy and mechanical property of modified rigid polyurethane foams [J]. Materials & Design, 2019, 181: 107929. |
13 | QIAN X, LIU Q, ZHANG L, et al. Synthesis of reactive DOPO⁃based flame retardant and its application in rigid polyisocyanurate⁃polyurethane foam [J]. Polymer Degradation and Stability, 2022, 197: 109852. |
14 | ACUñA P, ZHANG J, YIN G⁃Z, et al. Bio⁃based rigid polyurethane foam from castor oil with excellent flame retardancy and high insulation capacity via cooperation with carbon⁃based materials [J]. Journal of Materials Science, 2021, 56(3): 2 684⁃2 701. |
15 | POLACZEK K, KURAŃSKA M, PROCIAK A. Open⁃cell bio⁃polyurethane foams based on bio⁃polyols from used cooking oil [J]. Journal of Cleaner Production, 2022, 359: 132107. |
16 | VAHABI H, RASTIN H, MOVAHEDIFAR E, et al. Flame retardancy of bio⁃based polyurethanes: opportunities and challenges [J/OL]. Polymers,2020, 12(6):10.3390/polym12061234. |
17 | BHOYATE S, IONESCU M, KAHOL P K, et al. Sustainable flame⁃retardant polyurethanes using renewable resources [J]. Industrial Crops and Products, 2018, 123: 480⁃488. |
18 | BHOYATE S, IONESCU M, KAHOL P K, et al. Highly flame⁃retardant polyurethane foam based on reactive phosphorus polyol and limonene⁃based polyol [J]. Journal of Applied Polymer Science, 2018, 135(21): 46224. |
19 | 王俊胜, 刘丹, 赵婧, 等. 含溴阻燃剂对聚苯乙烯泡沫材料性能的影响[J]. 消防科学与技术, 2023, 42(01): 107⁃110. |
WANG J S, LIU D, ZHAO J,et al. The effects of bromine flame retardants on the thermal stability and flame retardancy of polystyrene foam[J]. Fire Science and Technology, 2023, 42(01): 107⁃110. | |
20 | QIN M, HU X, GUO J. Preparation of a new type of expansion flame retardant and application in polystyrene [J]. Coatings, 2023, 13(4): 733. |
21 | CHEN Q, ZHANG J, LI J, et al. Synthesis of a novel triazine⁃based intumescent flame retardant and its effects on the fire performance of expanded polystyrene foams [J]. Polymer Degradation and Stability, 2022, 203: 110079. |
22 | 王国振. 具有高效阻燃和抑烟性能的聚苯乙烯建筑塑料的制备与性能研究[J]. 塑料科技, 2021, 49(04): 49⁃52. |
WANG G Z. Preparation and performance of polystyrene building plastics with high efficiency flame retardant and smoke suppression properties[J]. Plastics Science and Technology, 2021, 49(04): 49⁃52. | |
23 | 路国忠, 丁秀娟, 邓瑜, 等. 热固性模塑聚苯乙烯泡沫板改性技术研究[J]. 墙材革新与建筑节能, 2018, (01): 53⁃56. |
24 | SARIKA P R, NANCARROW P, KHANSAHEB A, et al. Progress in bio⁃based phenolic foams: synthesis, properties, and applications [J]. ChemBioEng Reviews, 2021, 8(6): 612⁃632. |
25 | BO C, SHI Z, HU L, et al. Cardanol derived P, Si and N based precursors to develop flame retardant phenolic foam [J]. Scientific Reports, 2020, 10(1): 12082. |
26 | BO C, YANG X, HU L, et al. Enhancement of flame⁃retardant and mechanical performance of phenolic foam with the incorporation of cardanol⁃based siloxane [J]. Polymer Composites, 2019, 40(6): 2 539⁃2 547. |
27 | DOGAN M, DOGAN S D, SAVAS L A, et al. Flame retardant effect of boron compounds in polymeric materials [J]. Composites Part B: Engineering, 2021, 222: 109088. |
28 | XU W, CHEN R, XU J, et al. Preparation and mechanism of polyurethane prepolymer and boric acid co⁃modified phenolic foam composite: Mechanical properties, thermal stability, and flame retardant properties [J]. Polymers for Advanced Technologies, 2019, 30(7): 1 738⁃1 750. |
29 | DENG P, SHI Y, LIU Y, et al. Solidifying process and flame retardancy of epoxy resin cured with boron⁃containing phenolic resin [J]. Applied Surface Science, 2018, 427: 894⁃904. |
30 | XU P, YU Y, CHANG M, et al. Preparation and characterization of bio⁃oil phenolic foam reinforced with montmorillonite [J]. Polymers, 2019, 11(9): 1471. |
31 | LI B, YUAN Z, SCHMIDT J, et al. New foaming formulations for production of bio⁃phenol formaldehyde foams using raw kraft lignin [J]. European Polymer Journal, 2019, 111: 1⁃10. |
32 | DELGADO⁃SÁNCHEZ C, SARAZIN J, SANTIAGO⁃MEDINA F J, et al. Impact of the formulation of biosourced phenolic foams on their fire properties [J]. Polymer Degradation and Stability, 2018, 153: 1⁃14. |
33 | ISSAOUI H, DE HOYOS⁃MARTINEZ P L, PELLERIN V, et al. Effect of catalysts and curing temperature on the properties of biosourced phenolic foams [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(18): 6 209⁃6 223. |
34 | GUO W, WANG X, ZHANG P, et al. Nano⁃fibrillated cellulose⁃hydroxyapatite based composite foams with excellent fire resistance [J]. Carbohydrate Polymers, 2018, 195: 71⁃78. |
35 | JIANG S, ZHANG M, LI M, et al. Cellulose⁃based composite thermal⁃insulating foams toward eco⁃friendly, flexible and flame⁃retardant [J]. Carbohydrate Polymers, 2021, 273: 118544. |
36 | 王虎. 建筑外墙用气凝胶保温材料的制备 [D]. 沈阳理工大学, 2023. |
37 | YU Z⁃L, YANG N, APOSTOLOPOULOU⁃KALKAVOURA V, et al. Fire⁃retardant and thermally insulating phenolic⁃silica aerogels [J]. Angewandte Chemie International Edition, 2018, 57(17): 4 538⁃4 542. |
38 | KUANG Y, LIU P, YANG Y, et al. Study on the influence of the preparation method of konjac glucomannan⁃silica aerogels on the microstructure, thermal insulation, and flame⁃retardant properties [J]. Molecules, 2023, 28(4): 1691. |
39 | CHOE H, SUNG G, KIM J H. Chemical treatment of wood fibers to enhance the sound absorption coefficient of flexible polyurethane composite foams [J]. Composites Science and Technology, 2018, 156: 19⁃27. |
40 | CAO L, FU Q, SI Y, et al. Porous materials for sound absorption [J]. Composites Communications, 2018, 10: 25⁃35. |
41 | RASTEGAR N, ERSHAD⁃LANGROUDI A, PARSIMEHR H, et al. Sound⁃absorbing porous materials: a review on polyurethane⁃based foams [J]. Iranian Polymer Journal, 2022, 31(1): 83⁃105. |
42 | JI Y, CHEN S, ZHU W. The effect of pore numbers in the cell walls of soybean oil polyurethane foam on sound absorption performance [J]. Applied Acoustics, 2020, 157: 107010. |
43 | AKDOGAN E, ERDEM M, UREYEN M E, et al. Rigid polyurethane foams with halogen⁃free flame retardants: Thermal insulation, mechanical, and flame retardant properties [J]. Journal of Applied Polymer Science, 2020, 137(1): 47611. |
44 | CHMIEL E, OLIWA R, LUBCZAK J. Boron⁃containing non⁃flammable polyurethane foams [J]. Polymer⁃Plastics Technology and Materials, 2019, 58(4): 394⁃404. |
45 | XIA L, LIU J, LI Z, et al. Synthesis and flame retardant properties of new boron⁃containing polyurethane [J]. Journal of Macromolecular Science, Part A, 2020, 57(8): 560⁃568. |
46 | DONG F, WANG Y, WANG S, et al. Flame⁃retarded polyurethane foam conferred by a bio⁃based nitrogen‑phosphorus⁃containing flame retardant [J]. Reactive and Functional Polymers, 2021, 168: 105057. |
47 | Kang X, Liu Y, Chen N, et al. Influence of modified ammonium polyphosphate on the fire behavior and mechanical properties of polyformaldehyde [J]. Journal of Applied Polymer Science, 2020, 138(14): 50156. |
48 | ASARE M A, KOTE P, CHAUDHARY S, et al. Sunflower oil as a renewable resource for polyurethane foams: effects of flame⁃retardants [J]. Polymers, 2022, 14(23): 5282. |
49 | CHEN H⁃B, SCHIRALDI D A. Flammability of polymer/clay aerogel composites: an overview [J]. Polymer Reviews, 2019, 59(1): 1⁃24. |
50 | LI Z, CHENG X, GONG L, et al. Enhanced flame retardancy of hydrophobic silica aerogels by using sodium silicate as precursor and phosphoric acid as catalyst [J]. Journal of Non⁃Crystalline Solids, 2018, 481: 267⁃275. |
51 | WU K, DONG W, PAN Y, et al. Lightweight and flexible phenolic aerogels with three⁃dimensional foam reinforcement for acoustic and thermal insulation [J]. Industrial & Engineering Chemistry Research, 2021, 60(3): 1 241⁃1 249. |
[1] | 孔子萌, 张简, 邓雅馨, 徐雪玲, 陈雅君. 阻燃聚丁二酸丁二醇酯的研究进展[J]. 中国塑料, 2024, 38(2): 105-117. |
[2] | 王栋. 金属有机框架基阻燃剂在阻燃领域的研究进展[J]. 中国塑料, 2024, 38(2): 118-125. |
[3] | 赵晓波, 王国泰, 梁淑君. 聚硅氧烷包覆改性聚磷酸铵及其阻燃聚乙烯性能的研究[J]. 中国塑料, 2024, 38(1): 86-91. |
[4] | 王玉伟, 肖润祥, 张宏凯, 官文瑾, 邓亚峰. 纳米纤维基空气过滤材料的研究进展[J]. 中国塑料, 2023, 37(9): 115-124. |
[5] | 张慈海, 刘松, 周冬晴, 陈宇, 张婷婷, 钟柳, 刘治国. DOPO基反应型阻燃剂的合成与应用研究进展[J]. 中国塑料, 2023, 37(9): 64-74. |
[6] | 宫芳芳 陶梦伟 王靖宇 钱立军. 无卤阻燃热塑性聚烯烃弹性体的研究进展[J]. , 2023, 37(6): 123-130. |
[7] | 张文睿 贾涵 张鑫 潘亚敏 刘春太 申长雨 刘宪虎. 超高分子量聚乙烯薄膜制备方法与应用[J]. , 2023, 37(5): 1-8. |
[8] | 刘会媛 马闯 关俊霞 李繁麟 杨笑春 张青. 磷化瓜尔胶与APP协同阻燃PLA的性能研究[J]. , 2023, 37(4): 53-59. |
[9] | 李玉峰 赵阳 刘丽爽 冯峰 高晓辉 何锡凤. 乳液聚合法制备聚合物/石墨烯复合材料研究进展[J]. , 2023, 37(4): 112-120. |
[10] | 邢利欣 任小龙 廖文靖 陈志平 冯羽风. 可生物降解双向拉伸聚乳酸薄膜成型技术研究进展[J]. , 2023, 37(4): 121-135. |
[11] | 黄雅婷, 李连良, 张翼, 汤维, 钱立军. 水性膨胀型钢结构防火涂料研究进展[J]. 中国塑料, 2023, 37(2): 77-89. |
[12] | 张建忠, 方杨, 张旺斌, 黄腾, 俞友明, 戴进峰, 宋平安. 阻燃不饱和聚酯研究进展[J]. 中国塑料, 2023, 37(12): 115-123. |
[13] | 周子玉, 桑晓明, 耿旭, 陈兴刚. 含席夫碱结构热固性树脂的研究进展[J]. 中国塑料, 2023, 37(11): 163-169. |
[14] | 马俊丞, 徐双平, 王馨甜, 贾宏葛, 张明宇, 蘧延庆. 生物基材料在碘吸附中的研究进展[J]. 中国塑料, 2023, 37(11): 178-191. |
[15] | 赵合瑾, 万贤, 路佳慧, 张红雨, 郭宝华. 相变储能材料在建筑领域的发展和应用[J]. 中国塑料, 2023, 37(11): 46-61. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||