1 |
Montarnal D, Capelot M, Tournilhac F, et al. Silica⁃like malleable materials from permanent organic networks[J]. Science, 2011, 334(6 058): 965⁃968.
|
2 |
Xiang S L, Hua 1 Q X, Gong W L,et al. Photoplastic transformation based on dynamic covalent chemistry[J]. ACS Applied Materials and Interfaces, 2019, 11(26): 23 623⁃23 631.
|
3 |
Fukuda K, Shimoda M, Sukegawa M, et al. Doubly degradable dynamers: dynamic covalent polymers based on reversible imine connections and biodegradable polyester units[J]. Green Chemistry, 2012, 14(10): 2 907⁃2 911.
|
4 |
Ruiz De Luzuriaga A, Martin R, Markaide N, et al. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber⁃reinforced thermoset composites[J]. Materials Horizons, 2016, 3(3): 241⁃247.
|
5 |
Araya⁃Hermosilla R, Broekhuis A A, Picchioni F. Reversible polymer networks containing covalent and hydrogen bonding interactions[J]. European Polymer Journal, 2014, 50: 127⁃134.
|
6 |
Lu Y X, Tournilhac F, Leibler L, et al. Making insoluble polymer networks malleable via olefin metathesis[J]. Journal of the American Chemical Society, 2012, 134(20): 8 424⁃8 427.
|
7 |
Wang L, Wong C P. Syntheses and characterizations of thermally reworkable epoxy resins. Part I[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1999, 37(15): 2 991⁃3 001.
|
8 |
Mai V D, Shin S R, Lee D S, et al. Thermal healing, reshaping and ecofriendly recycling of epoxy resin crosslinked with Schiff base of vanillin and hexane-1,6⁃diamine[J]. Polymers, 2019, 11(2): 293.
|
9 |
Zhao S, Abu⁃Omar M M. Recyclable and malleable epoxy thermoset bearing aromatic imine bonds[J]. Macromolecules, 2018, 51(23): 9 816⁃9 824.
|
10 |
Wang S, Ma S, Li Q, et al. Facile in situ preparation of high⁃performance epoxy vitrimer from renewable resources and its application in nondestructive recyclable carbon fiber composite[J]. Green Chemistry, 2019, 21(6): 1 484⁃1 497.
|
11 |
Barmatov E, Hughes T. Degradation of a schiff⁃base corrosion inhibitor by hydrolysis, and its effects on the inhibition efficiency for steel in hydrochloric acid[J]. Materials Chemistry and Physics, 2021, 257: 123758.
|
12 |
Taynton P, Ni H, Zhu C, et al. Repairable woven carbon fiber composites with full recyclability enabled by malleable polyimine networks[J]. Advanced Materials, 2016, 28(15): 2 904⁃2 909.
|
13 |
Liu Y Y, Liu G L, Li Y D, et al. Biobased high⁃performance epoxy vitrimer with UV shielding for recyclable carbon fiber reinforced composites[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(12): 4 638⁃4 647.
|
14 |
Ji J Q, Huang S, Liu S, et al. A novel biomass⁃derived Schiff base waterborne epoxy coating for flame retardation and anti⁃bacteria[J]. Polymer Degradation and Stability, 2022, 199: 109910.
|
15 |
Chen X, Wang J, Yang S, et al. Preparation of flame⁃retardant cyanate ester with low dielectric constants and dissipation factors modified with novel phosphorus⁃contained Schiff base[J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(6): 3 153⁃3 164.
|
16 |
Liu W J, Yan M L, Zhao W J. Antibacterial⁃renew dual⁃function anti⁃biofouling strategy: self⁃assembled Schiff⁃base metal complex coatings built from natural products[J]. Journal of Colloid and Interface Science, 2023, 629: 496⁃507.
|
17 |
Zou Z, Zhu C, Li Y, et al. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite[J]. Science Advances, 2018, 4(2): 0508.
|
18 |
Chen X, Sun P, Tian H, et al. Self⁃healing and stretchable conductor based on embedded liquid metal patterns within imprintable dynamic covalent elastomer[J]. Journal of Materials Chemistry C, 2022, 10(3): 1 039⁃1 047.
|
19 |
Mehtiö T, Nurmi L, Rämö V, et al. Synthesis and characterization of copolyanhydrides of carbohydrate⁃based galactaric acid and adipic acid[J]. Carbohydrate Research, 2015, 402: 102⁃110.
|
20 |
Nabipour H, Niu H, Wang X, et al. Fully bio⁃based epoxy resin derived from vanillin with flame retardancy and degradability[J]. Reactive and Functional Polymers, 2021, 168: 105034.
|
21 |
Taynton P, Yu K, Shoemaker R K, et al. Heat‐or water‐driven malleability in a highly recyclable covalent network polymer[J]. Advanced Materials, 2014, 26(23): 3 938⁃3 942.
|
22 |
Zhu C P, Xi C, Doro W, et al. Tuning the physical properties of malleable and recyclable polyimine thermosets: the effect of solvent and monomer concentration[J]. RSC Advances, 2017, 7(76): 48 303⁃48 307.
|
23 |
孙璐璐,万雨卓,高明星,等. 面向可持续发展的高分子科学教学实验设计:含席夫碱型动态共价键的可修复热固性材料的制备与表征[J].高分子通报,2023,36(4):521⁃528.
|
|
SUN L L, WAN Y Z, GAO M X,et al. Experimental design for teaching polymer science for sustainable development:preparation and characterization of repairable thermoset materials containing schiff base type dynamic covalent bonds[J]. Polymer Bulletin,2023,36(4):521⁃528.
|
24 |
Wang S, Ma S, Li Q, et al. Robust, fire⁃safe, monomer⁃recovery, highly malleable thermosets from renewable bioresources[J]. Macromolecules, 2018, 51(20): 8 001⁃8 012.
|
25 |
Li J, Xu P L, Zhu Y K, et al. A promising strategy for chemical recycling of carbon fiber/thermoset composites: self⁃accelerating decomposition in a mild oxidative system[J]. Green Chemistry, 2012, 14(12): 3 260⁃3 263.
|
26 |
Luo C, Lei Z, Mao Y, et al. Chemomechanics in the moisture⁃induced malleability of polyimine⁃based covalent adaptable networks[J]. Macromolecules, 2018, 51(23): 9 825⁃9 838.
|
27 |
Chohan Z H, Synthesis Praveen M., characterization, coordination and antibacterial properties of novel asymmetric 1, 1′‐disubstituted ferrocene‐derived Schiff‐base ligands and their Co (II), Cu (II) Ni (II) and Zn (II) complexes[J]. Applied Organometallic Chemistry, 2001, 15(7): 617⁃625.
|
28 |
Dagdag O, Safi Z, Hsissou R, et al. Epoxy pre⁃polymers as new and effective materials for corrosion inhibition of carbon steel in acidic medium: Computational and experimental studies[J]. Scientific Reports, 2019, 9(1): 1⁃14.
|