中国塑料 ›› 2025, Vol. 39 ›› Issue (8): 131-138.DOI: 10.19491/j.issn.1001-9278.2025.08.021

• 综述 • 上一篇    下一篇

基于机器学习的熔融沉积成型表面质量预测控制研究进展

程伟1(), 赵永强1,2(), 庞嘉尧1, 何勇2, 余乐1   

  1. 1.陕西理工大学工程训练中心,陕西 汉中 723001
    2.陕西理工大学机械工程学院,陕西 汉中 723001
  • 收稿日期:2024-08-19 出版日期:2025-08-26 发布日期:2025-07-30
  • 通讯作者: 赵永强(1976—),男,教授,从事增材制造、特种成形及精密制造技术的研究,zyq0620@163.com
    E-mail:2467649070@qq.com;zyq0620@163.com
  • 作者简介:程伟(1986—),男,硕士,从事3D打印技术的研究,2467649070@qq.com
  • 基金资助:
    国家自然科学基金(51505268);陕西省重点研发计划(S2022?YF?YBGF?0437);陕西省自然科学基础研究计划项目(2023?JC?YB?452)

Research progress in surface quality prediction control in fused deposition modeling technology based on machine learning

CHENG Wei1(), ZHAO Yongqiang1,2(), PANG Jayao1, HE Yong2, YU Le1   

  1. 1.Engineering Training Center,Shaanxi University of Technology,Hanzhong 723001,China
    2.School of Mechanical Engineering,Shaanxi University of Technology,Hanzhong 723001,China
  • Received:2024-08-19 Online:2025-08-26 Published:2025-07-30
  • Contact: ZHAO Yongqiang E-mail:2467649070@qq.com;zyq0620@163.com

摘要:

分析了表面缺陷产生机理及其影响参数,从过程预测控制模型构建和结果预测控制优化2个方面综述了机器学习在熔融沉积成型(FDM)各阶段的预测控制成效。最后,对目前亟待解决的问题和可能的发展趋势进行了讨论。

关键词: 熔融沉积成型, 表面粗糙度, 机器学习, 预测控制, 优化

Abstract:

This review systematically analyzed the generation mechanisms of surface defects in fused deposition modeling (FDM) and their key influencing parameters. The effectiveness of machine learning⁃based predictive control throughout the FDM process was summarized, focusing on two critical aspects: (1) construction of process predictive control models and (2) optimization of result predictive control. Finally, urgent unresolved issues were proposed and potential future development directions were discussed.

Key words: fused deposition modeling, surface roughness, machine learning, prediction control, optimization

中图分类号: