京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2022, Vol. 36 ›› Issue (9): 131-139.DOI: 10.19491/j.issn.1001-9278.2022.09.018
• Standard and Test • Previous Articles Next Articles
HE Anqi1(), HUANG Jian2(
), ZHANG Ying3, SUN Huali2, XIANG Aimin3, XU Haiyun3
Received:
2022-05-31
Online:
2022-09-26
Published:
2022-09-26
CLC Number:
HE Anqi, HUANG Jian, ZHANG Ying, SUN Huali, XIANG Aimin, XU Haiyun. Pressure design of chlorinated poly(vinyl chloride) pipelines in sprinkler systems and comparative analysis of domestic and foreign standards[J]. China Plastics, 2022, 36(9): 131-139.
序号 | 项目 | ISO规定 | GB规定 | ASTM规定 |
---|---|---|---|---|
1 | 定级标准 | ISO 9080:2012 | GB/T 18252-2020(等同ISO 9080) | ASTM D2837⁃2013e1 |
2 | 外推长期静液压条件 | 20 ℃、50年、置信度为97.5 % | 20 ℃、50年、置信度为97.5 % | 20 ℃、100 000 h、平均静液压强 |
3 | 静液压强度取值 | σLPL | σLPL | σLTHS |
4 | 分级依据 | MRS | MRS | HDB |
序号 | 项目 | ISO规定 | GB规定 | ASTM规定 |
---|---|---|---|---|
1 | 定级标准 | ISO 9080:2012 | GB/T 18252-2020(等同ISO 9080) | ASTM D2837⁃2013e1 |
2 | 外推长期静液压条件 | 20 ℃、50年、置信度为97.5 % | 20 ℃、50年、置信度为97.5 % | 20 ℃、100 000 h、平均静液压强 |
3 | 静液压强度取值 | σLPL | σLPL | σLTHS |
4 | 分级依据 | MRS | MRS | HDB |
σLPL(20 ℃,50年置信度97.5 %)/MPa | MRS/MPa | 命名 |
---|---|---|
6.3≤σLPL≤7.99 | 6.3 | 63,如PE 63 |
8.0≤σLPL≤9.99 | 8.0 | 80,如PPR 80 |
10.0≤σLPL≤11.2 | 10.0 | 100,如PE 100 |
20.0≤σLPL≤22.39 | 20.0 | 200,如PVC⁃U 200 |
25.0≤σLPL≤27.99 | 25.0 | 250,如PVC⁃U 250 |
σLPL(20 ℃,50年置信度97.5 %)/MPa | MRS/MPa | 命名 |
---|---|---|
6.3≤σLPL≤7.99 | 6.3 | 63,如PE 63 |
8.0≤σLPL≤9.99 | 8.0 | 80,如PPR 80 |
10.0≤σLPL≤11.2 | 10.0 | 100,如PE 100 |
20.0≤σLPL≤22.39 | 20.0 | 200,如PVC⁃U 200 |
25.0≤σLPL≤27.99 | 25.0 | 250,如PVC⁃U 250 |
LTHS计算值范围 | HDB分级 | ||
---|---|---|---|
psi | MPa | psi | MPa |
1 530≤LTHS<1 920 | 10.55≤σLTHS<13.24 | 1 600,如PE 4710 | 11.03 |
1 920≤LTHS<2 400 | 13.24≤σLTHS<16.55 | 2 000 | 13.79 |
2 400≤LTHS<3 020 | 16.55≤σLTHS<20.82 | 2 500 | 17.24 |
3 020≤LTHS<3 830 | 20.82≤σLTHS<26.41 | 3 150,如 PVC 2116 | 21.72 |
3 830≤LTHS<4 800 | 26.41≤σLTHS<33.09 | 4 000,如CPVC 4120 | 27.58 |
LTHS计算值范围 | HDB分级 | ||
---|---|---|---|
psi | MPa | psi | MPa |
1 530≤LTHS<1 920 | 10.55≤σLTHS<13.24 | 1 600,如PE 4710 | 11.03 |
1 920≤LTHS<2 400 | 13.24≤σLTHS<16.55 | 2 000 | 13.79 |
2 400≤LTHS<3 020 | 16.55≤σLTHS<20.82 | 2 500 | 17.24 |
3 020≤LTHS<3 830 | 20.82≤σLTHS<26.41 | 3 150,如 PVC 2116 | 21.72 |
3 830≤LTHS<4 800 | 26.41≤σLTHS<33.09 | 4 000,如CPVC 4120 | 27.58 |
序号 | 项目 | ISO规定 | GB规定 | ASTM规定 |
---|---|---|---|---|
1 | 定级标准 | ISO 9080:2012 | GB/T 18252—2020(等同ISO 9080) | ASTM D1784⁃20 |
2 | 外推长期静液压条件 | 20 ℃、50年、置信度为97.5 % | 20 ℃、50年、置信度为97.5 % | 20 ℃、100 000 h、平均静液压强 |
3 | 静液压强度取值 | σLPL | σLPL | σLTHS |
4 | 分级依据 | MRS及定级曲线 | MRS及定级曲线 | 5个不同物理性能指标及HDB |
5 | 分级要求 | 定级曲线在参照曲线之上 | 定级曲线在参照曲线之上 | - |
序号 | 项目 | ISO规定 | GB规定 | ASTM规定 |
---|---|---|---|---|
1 | 定级标准 | ISO 9080:2012 | GB/T 18252—2020(等同ISO 9080) | ASTM D1784⁃20 |
2 | 外推长期静液压条件 | 20 ℃、50年、置信度为97.5 % | 20 ℃、50年、置信度为97.5 % | 20 ℃、100 000 h、平均静液压强 |
3 | 静液压强度取值 | σLPL | σLPL | σLTHS |
4 | 分级依据 | MRS及定级曲线 | MRS及定级曲线 | 5个不同物理性能指标及HDB |
5 | 分级要求 | 定级曲线在参照曲线之上 | 定级曲线在参照曲线之上 | - |
性能和单元 | 单元范围 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
混配料树脂种类 | 不规定 | PVC | CPVC | CVC | ||||||
最小冲击 强度 | J/m [ft·lbf/in] | 不规定 | <40.0 [<0.65] | 40 [0.65] | 80.1 [1.50] | 266.9 [5.00] | ||||
最小拉伸 强度 | MPa [psi] | 不规定 | <34 [<5 000] | 34 [5 000] | 41.0 [6 000] | 48.0 [7 000] | 55.0 [8 000] | |||
最小抗拉 弹性模量 | MPa [psi] | 不规定 | <1 930 [280 000] | 1930 [280 000] | 2210 [320 000] | 2480 [360 000] | 2 760 [400 000] | 3 310 [480 000] | 860 [560 000] | |
最小负载 (1.82 MPa) 变形温度 | ℃ [℉] | 不规定 | 60 [140] | 70 [158] | 80 [176] | 100 [212] | 110 [230] | 120 [248] | 130 [266] | 140 [284] |
最小静 液压强度 | MPa [psi] | 不规定 | 13.8 [13.25~16.5] [2 000] [1 920~2 390] | 17.25 [16.55~20.75] [ [2 400~3 010] | 21.70 [20.80~26.35] [ [3 020~3 820] | 27.60 [20.40~33.05] [4 000] [3 830~490] |
性能和单元 | 单元范围 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
混配料树脂种类 | 不规定 | PVC | CPVC | CVC | ||||||
最小冲击 强度 | J/m [ft·lbf/in] | 不规定 | <40.0 [<0.65] | 40 [0.65] | 80.1 [1.50] | 266.9 [5.00] | ||||
最小拉伸 强度 | MPa [psi] | 不规定 | <34 [<5 000] | 34 [5 000] | 41.0 [6 000] | 48.0 [7 000] | 55.0 [8 000] | |||
最小抗拉 弹性模量 | MPa [psi] | 不规定 | <1 930 [280 000] | 1930 [280 000] | 2210 [320 000] | 2480 [360 000] | 2 760 [400 000] | 3 310 [480 000] | 860 [560 000] | |
最小负载 (1.82 MPa) 变形温度 | ℃ [℉] | 不规定 | 60 [140] | 70 [158] | 80 [176] | 100 [212] | 110 [230] | 120 [248] | 130 [266] | 140 [284] |
最小静 液压强度 | MPa [psi] | 不规定 | 13.8 [13.25~16.5] [2 000] [1 920~2 390] | 17.25 [16.55~20.75] [ [2 400~3 010] | 21.70 [20.80~26.35] [ [3 020~3 820] | 27.60 [20.40~33.05] [4 000] [3 830~490] |
项目 | GB/T 39380.1要求 | ASTM D1784及F442规定 |
---|---|---|
密度 | 1 450~1 650 kg/m3 | - |
拉伸屈服应力 | ≥55 MPa | 拉伸强度≥48.3 MPa |
拉伸弹性模量 | ≥2 500 MPa | ≥2 482 MPa |
悬臂梁缺口冲击 | ≥8.0 kJ/m2 | 80.1 J/m,等同于≥8.01 kJ/m2 |
维卡软化温度 | ≥110 ℃ | 热变形温度≥100 ℃ |
氯含量(质量分数) | ≥60 % | - |
线膨胀系数/(m/m℃) | ≤6.7×10⁃5 | - |
项目 | GB/T 39380.1要求 | ASTM D1784及F442规定 |
---|---|---|
密度 | 1 450~1 650 kg/m3 | - |
拉伸屈服应力 | ≥55 MPa | 拉伸强度≥48.3 MPa |
拉伸弹性模量 | ≥2 500 MPa | ≥2 482 MPa |
悬臂梁缺口冲击 | ≥8.0 kJ/m2 | 80.1 J/m,等同于≥8.01 kJ/m2 |
维卡软化温度 | ≥110 ℃ | 热变形温度≥100 ℃ |
氯含量(质量分数) | ≥60 % | - |
线膨胀系数/(m/m℃) | ≤6.7×10⁃5 | - |
项目 | 要求 | ASTM F442及UL1821部分规定 |
---|---|---|
密度 | 1 450~1 650 kg/m3 | — |
拉伸屈服应力 | ≥55 MPa | 拉伸强度≥48.3 MPa |
维卡软化温度 | ≥110 ℃ | — |
氯含量(质量分数) | ≥60 % | — |
纵向回缩率 | ≤5.0 % | — |
耐落锤冲击,TIR | ≤5 % | — |
液压强度(冲击后) | 无渗漏、无破裂 | 无渗漏、无破裂 |
抗挠性 | 无破裂、无损伤或无渗漏 | 无破裂、无损伤或无渗漏 |
扁平试验 | 无破裂、无损伤 | 无破裂、无损伤 |
低温滑落 | 无破裂、无损伤 | 无破裂、无损伤 |
爆破试验 | 爆破环向应力≥44.1 MPa | 爆破环向应力≥44.1 MPa |
静液压试验 | 23 ℃/1 000 h无渗漏、无破裂 49 ℃/1 000 h,无渗漏、无破裂 | 23 ℃/1 000 h无渗漏、无破裂 |
耐环境性 | 耐空气老化:老化后液压无渗漏、无破裂 耐温水老化:老化后液压无渗漏、无破裂 耐光水暴露:拉伸屈服应力保留率≥90 % | 耐空气老化:老化后液压无渗漏、无破裂 耐温水老化:老化后液压无渗漏、无破裂 耐光水暴露:拉伸屈服应力保留率≥90 % |
耐火性 | 管材无破裂、无损坏 | 管材无破裂、无损坏 |
项目 | 要求 | ASTM F442及UL1821部分规定 |
---|---|---|
密度 | 1 450~1 650 kg/m3 | — |
拉伸屈服应力 | ≥55 MPa | 拉伸强度≥48.3 MPa |
维卡软化温度 | ≥110 ℃ | — |
氯含量(质量分数) | ≥60 % | — |
纵向回缩率 | ≤5.0 % | — |
耐落锤冲击,TIR | ≤5 % | — |
液压强度(冲击后) | 无渗漏、无破裂 | 无渗漏、无破裂 |
抗挠性 | 无破裂、无损伤或无渗漏 | 无破裂、无损伤或无渗漏 |
扁平试验 | 无破裂、无损伤 | 无破裂、无损伤 |
低温滑落 | 无破裂、无损伤 | 无破裂、无损伤 |
爆破试验 | 爆破环向应力≥44.1 MPa | 爆破环向应力≥44.1 MPa |
静液压试验 | 23 ℃/1 000 h无渗漏、无破裂 49 ℃/1 000 h,无渗漏、无破裂 | 23 ℃/1 000 h无渗漏、无破裂 |
耐环境性 | 耐空气老化:老化后液压无渗漏、无破裂 耐温水老化:老化后液压无渗漏、无破裂 耐光水暴露:拉伸屈服应力保留率≥90 % | 耐空气老化:老化后液压无渗漏、无破裂 耐温水老化:老化后液压无渗漏、无破裂 耐光水暴露:拉伸屈服应力保留率≥90 % |
耐火性 | 管材无破裂、无损坏 | 管材无破裂、无损坏 |
公称尺寸(DN)/mm | 平均外径(dm)/mm | 管材壁厚(en)/mm | |
---|---|---|---|
GB/T39380.1(SDR13.5) | ASTM F442(SDR13.5) | ||
20 | 26.7 | 2.0 | 1.98 |
25 | 33.1 | 2.5 | 2.46 |
32 | 42.2 | 3.2 | 3.12 |
40 | 48.2 | 3.6 | 3.58 |
50 | 60.3 | 4.5 | 4.47 |
65 | 73.0 | 5.5 | 5.41 |
80 | 88.9 | 6.6 | 6.58 |
公称尺寸(DN)/mm | 平均外径(dm)/mm | 管材壁厚(en)/mm | |
---|---|---|---|
GB/T39380.1(SDR13.5) | ASTM F442(SDR13.5) | ||
20 | 26.7 | 2.0 | 1.98 |
25 | 33.1 | 2.5 | 2.46 |
32 | 42.2 | 3.2 | 3.12 |
40 | 48.2 | 3.6 | 3.58 |
50 | 60.3 | 4.5 | 4.47 |
65 | 73.0 | 5.5 | 5.41 |
80 | 88.9 | 6.6 | 6.58 |
项目 | 要求 | 试验参数 | |
---|---|---|---|
压力循环 | 无破裂、无渗漏 | 循环最低压力 循环最高压力 循环频率 循环次数 | 0+0.05 MPa 2.4 MPa ≤10 次/min 3 000 次 |
温度循环 | 无破裂、无渗漏 | 循环最低温度 循环最高温度a 放置时间 循环次数 | (1.0±1) ℃ (49±1) ℃ 24 h 5 次 |
说明:循环完成后,按照GB/T 6111-2018[ |
项目 | 要求 | 试验参数 | |
---|---|---|---|
压力循环 | 无破裂、无渗漏 | 循环最低压力 循环最高压力 循环频率 循环次数 | 0+0.05 MPa 2.4 MPa ≤10 次/min 3 000 次 |
温度循环 | 无破裂、无渗漏 | 循环最低温度 循环最高温度a 放置时间 循环次数 | (1.0±1) ℃ (49±1) ℃ 24 h 5 次 |
说明:循环完成后,按照GB/T 6111-2018[ |
1 | 尼华,杨丙杰. 自动喷水灭火系统用氯化聚氯乙烯管的研究与分析[J]. 给水排水,2017,53(11):88⁃91. |
2 | GB∕T 18252—2020. 塑料管道系统 用外推法确定热塑性塑料材料以管材形式的长期静液压强度 [S].北京:中国标准出版社,2020. |
3 | . 热塑性塑料压力管材和管件用材料分级和命名 总体使用(设计)系数 [S]. 北京:中国标准出版社,2001 |
4 | . 燃气用埋地聚乙烯(PE)管道系统 第1部分:管材 [S]. 北京:中国标准出版社,2015. |
5 | . 给水用聚乙烯(PE)管道系统 第1部分:总则 [S]. 北京:中国标准出版社,2018. |
6 | . 冷热水用聚丙烯管道系统 第1部分:总则 [S]. 北京:中国标准出版社,2017. |
7 | . 冷热水用聚丁烯(PB)管道系统 第1部分:总则 [S]. 北京:中国标准出版社,2020. |
8 | .冷热水用耐热聚乙烯(PE⁃RT)管道系统 第1部分:总则 [S]. 北京:中国标准出版社,2020. |
9 | . 冷热水用氯化聚氯乙烯(PVC⁃C)管道系统 第1部分:总则 [S]. 北京:中国标准出版社,2020. |
10 | . 工业用氯化聚氯乙烯(PVC⁃C)管道系统 第1部分:总则 [S]. 北京:中国标准出版社,2020. |
11 | . 喷水灭火用氯化聚氯乙烯(PVC⁃C)管道系统 第1部分:管材 [S]. 北京:中国标准出版社,2020. |
12 | . Plastics piping and ducting systems⁃Determination of the long⁃term hydrostatic strength of thermoplastics materials in pipe form by extrapolation [S]. ISO,2012. |
13 | . Thermoplastics materials for pipes and fittings for pressure applications⁃Classification, designation and design coefficient [S]. ISO,2009. |
14 | . Plastics piping systems for the supply of gaseous fuels⁃Polyethylene (PE)⁃Part 1: General [S]. ISO,2014. |
15 | . Plastics piping systems for water supply and for drainage and sewerage under pressure⁃Polyethylene (PE)⁃Part 1: General [S]. ISO,2019. |
16 | Plastics piping systems for hot and cold water installations⁃Polypropylene (PP)⁃Part 1: General [S]. ISO,2013. |
17 | Plastics piping systems for hot and cold water installations⁃Polybutene (PB)⁃Part 1: General [S]. ISO,2017. |
18 | Plastics piping systems for hot and cold water installations⁃Polyethylene of raised temperature resistance (PE⁃RT)⁃Part 1: General [S]. ISO,2009. |
19 | Plastics piping systems for water supply and for buried and above⁃ground drainage and sewerage under pressure⁃Unplasticized poly(vinyl chloride) (PVC⁃U)⁃Part 1: General [S]. ISO,2009. |
20 | Plastics piping systems for hot and cold water installations⁃Chlorinated poly(vinyl chloride) (PVC⁃C)⁃Part 1: General [S]. ISO,2009. |
21 | Plastics piping systems for industrial applications⁃Acrylonitrile⁃butadiene⁃styrene (ABS), unplasticized poly(vinyl chloride) (PVC⁃U) and chlorinated poly(vinyl chloride) (PVC⁃C)⁃Specifications for components and the system⁃Metric series [S]. ISO,2003. |
22 | Plastics piping systems for industrial applications⁃Acrylonitrile⁃butadiene⁃styrene (ABS), unplasticized poly(vinyl chloride) (PVC⁃U) and chlorinated poly(vinyl chloride) (PVC⁃C)⁃Specifications for components and the system⁃Metric series⁃Amendment 1 [S]. ISO,2003. |
23 | 3 e1. Standard test method for obtaining hydrostatic design basis for thermoplastic pipe materials or pressure design basis for thermoplastic pipe products[S]. US⁃ASTM,2013. |
24 | . Standard specification for thermoplastic gas pressure pipe, tubing, and fittings [S]. US⁃ASTM,2009. |
25 | . Standard specification for polyethylene plastics pipe and fittings materials [S]. US⁃ASTM,2014. |
26 | Standard specification for rigid poly(vinyl chloride) (PVC) and chlorinated poly(vinyl chloride) (CPVC) compounds for plastic pipe and fittings used in pressure applications [S]. US⁃ASTM,2006. |
27 | . Standard classification system and basis for specification for rigid poly(Vinyl Chloride) (PVC) compounds and chlorinated poly(Vinyl Chloride) (PVC⁃C) compounds [S]. US⁃ASTM,2020. |
28 | TR⁃3/2018 H Policies⁃policies and procedures for developing hydrostatic design basis (HDB), hydrostatic design stresses (HDS), pressure design basis (PDB), strength design basis (SDB), minimum required strength (MRS) ratings, and categorized required strength (CRS) for thermoplastic piping materials or pipe[S]. US⁃PPI,2018. |
29 | TR⁃4/2018 H Listed materials⁃PPI listing of hydrostatic design basis (HDB), hydrostatic design stress (HDS), strength design basis (SDB), pressure design basis (PDB) and minimum required strength (MRS) ratings for thermoplastic piping materials or pipe[S]. US⁃PPI,2018. |
30 | . Standard specification for chlorinated poly (vinyl chloride) (PVC⁃C) plastic pipe (SDR–PR)1 [S]. US⁃ASTM,2013. |
31 | UL⁃1821:2019,UL standard for safety thermoplastic sprinkler pipe and fittings for fire protection service [S]. US⁃UL,2019. |
32 | . Standard specification for threaded chlorinated poly (vinyl chloride) (PVC⁃C) plastic fittings, schedule 80 1 [S]. US⁃ASTM,2015. |
33 | . Standard specification for socket⁃type chlorinated poly (vinyl chloride) (PVC⁃C) plastic fittings, schedule 401 [S]. US⁃ASTM,2017. |
34 | .Standard specification for chlorinated poly (vinyl chloride) (CPVC) plastic pipe fittings, schedule 80 this specification covers chlorinated poly (vinyl chloride) (CPVC) schedule 80 pipe fittings .[S]. US⁃ASTM,2019. |
35 | 流体输送用热塑性塑料管道系统 耐内压性能的测定 . [S]. 北京:中国标准出版社,2018. |
[1] | YANG Bo, YANG Zhen, ZENG Chen, WANG Zhigang, ZHAI Wei, CAO Fuxiang. Lifetime prediction of polyethylene pipe based on cyclic load [J]. China Plastics, 2022, 36(9): 63-69. |
[2] | LI Yan, TANG Xiaoxu, ZHANG Weijie, HUANG Ruipeng, ZHANG Shan. Research progress in evaluation of slow crack growth resistance of polyethylene pipes based on strain hardening modulus [J]. China Plastics, 2022, 36(9): 148-159. |
[3] | ZHANG Bing. Study on test of oxidation induction time for random copolymer polypropylene pipe [J]. China Plastics, 2022, 36(8): 107-109. |
[4] | PENG Jing, XIAO Da, WU Yingjiang, LI Bing, ZHANG Long, LI Zegang. Comparative analysis of Chinese and international standards for plastics structured⁃wall drainpipes [J]. China Plastics, 2022, 36(4): 135-141. |
[5] | HE Yi, ZHAO Guanghui. Research progress in repairing and reinforcement of oil and gas pipeline with composites [J]. China Plastics, 2022, 36(4): 70-82. |
[6] | YANG Xiaochun, YU Jing, ZHANG Qing. Effects of N⁃ethylpiperazinylphthalomide zinc on thermal stability of PVC [J]. China Plastics, 2022, 36(2): 125-130. |
[7] | ZHANG Xuemin, HOU Lin, FENG Jinmao, YAO Zhongliang, ZHONG Mingqiang. Study on natural aging behavior of buried polyethylene water supply pipeline in service [J]. China Plastics, 2022, 36(2): 49-55. |
[8] | WANG Zhenchao, ZHANG Ying, PENG Yijuan, YU Xi, ZHANG Qiuju. Research progress on reliability assessment methods of polyethylene pipes fusion joint [J]. China Plastics, 2022, 36(1): 148-159. |
[9] | CAI Haokun, DONG Jian, JIANG Zhongyi. Effect of carbon black on physical properties of polyethylene pipes for water supply [J]. China Plastics, 2022, 36(1): 42-46. |
[10] | ZHANG Yunpeng, LIU Xiangwei, WANG Zhiming, ZHANG Zhao, WANG Qingzhao. Design and manufacture of glass⁃fiber⁃reinforced PVC thermoplastic composite pipes for underground filling in coal mine [J]. China Plastics, 2022, 36(1): 61-66. |
[11] | JIN Fujing, HAO Yunan, JIAO Hongwen, ZHAO Hongyu. Application and Standard Interpretation of Graphite⁃modified Extruded Polystyrene Foam Boards for Thermal Insulation of Building [J]. China Plastics, 2021, 35(9): 109-115. |
[12] | WANG Zhigang, YANG Bo, LI Zhi, PENG Guoping, JIANG Zaijia, LI Guanbao. Study on Correlation Between Process Defect and Mechanical Properties of Polyethylene Pipe Elector⁃fusion Joints [J]. China Plastics, 2021, 35(9): 64-68. |
[13] | DIAO Xiaoqian, WENG Yunxuan, FU Ye, ZHOU Yingxin. Review of Applications and Performance Evaluation Methods of Biodegradable Plastics [J]. China Plastics, 2021, 35(8): 152-161. |
[14] | CHEN Xinqi, BAI Yun, LIU Shanshan, GAO Xia, LIU Weili, ZHANG Mei, WU Yuwei, HUANG Yan, ZHAO Hongliang. Determination of Polylactic Acid and Other Components in Biodegradable Plastics Using Quantitative 1H⁃NMR Method [J]. China Plastics, 2021, 35(8): 181-188. |
[15] | ZHAO Xingmin, ZHAO Jianping, YAN Jizhong. Photo⁃oxidation Aging Performance and Life Prediction for High⁃density Polyethylene Pipe [J]. China Plastics, 2021, 35(6): 33-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||