京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2025, Vol. 39 ›› Issue (5): 57-62.DOI: 10.19491/j.issn.1001-9278.2025.05.009
• Processing and Application • Previous Articles Next Articles
GUO Weichao(), XIN Xiaohang, ZENG Shanlin, GAO Xinqin, TANG Aofei
Received:
2024-06-27
Online:
2025-05-26
Published:
2025-05-22
CLC Number:
GUO Weichao, XIN Xiaohang, ZENG Shanlin, GAO Xinqin, TANG Aofei. Effect of region segmentation printing on performance of FDM 3D printed parts[J]. China Plastics, 2025, 39(5): 57-62.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2025.05.009
打印模型 | 打印方法 | 分层高度/mm | 打印线宽/mm | 填充方式 | 打印填充率/% | 打印壁厚/mm |
---|---|---|---|---|---|---|
试件1 | 等厚分层 | 0.1 | 0.25 | 直线型 | 30 | 1.5 |
等厚分层 | 0.1 | 0.48 | 直线型 | 30 | 1.5 | |
等厚分层 | 0.2 | 0.48 | 直线型 | 30 | 1.5 | |
等厚分层 | 0.3 | 0.48 | 直线型 | 30 | 1.5 | |
等厚分层 | 0.4 | 0.48 | 直线型 | 30 | 1.5 | |
区域分层 | 0.1,0.4 | 0.25,0.48 | 直线型 | 30 | 1.5 | |
半球模型 | 等厚分层 | 0.1 | 0.48 | 直线型 | 30 | 1.5 |
等厚分层 | 0.2 | 0.48 | 直线型 | 30 | 1.5 | |
等厚分层 | 0.3 | 0.48 | 直线型 | 30 | 1.5 | |
等厚分层 | 0.4 | 0.48 | 直线型 | 30 | 1.5 | |
区域分层 | 0.1,0.4 | 0.25,0.48 | 直线型 | 30 | 1.5 | |
奖杯模型 | 均匀密度填充 | 0.3 | 0.48 | 直线型 | 17 | 1.5 |
变密度填充 | 0.3 | 0.48 | 直线型 | 14~47 | 1.5 | |
不规则板 | 均匀密度填充 | 0.3 | 0.48 | 直线型 | 20 | 1.5 |
变密度填充 | 0.3 | 0.48 | 直线型 | 15~50 | 1.5 |
打印模型 | 打印方法 | 分层高度/mm | 打印线宽/mm | 填充方式 | 打印填充率/% | 打印壁厚/mm |
---|---|---|---|---|---|---|
试件1 | 等厚分层 | 0.1 | 0.25 | 直线型 | 30 | 1.5 |
等厚分层 | 0.1 | 0.48 | 直线型 | 30 | 1.5 | |
等厚分层 | 0.2 | 0.48 | 直线型 | 30 | 1.5 | |
等厚分层 | 0.3 | 0.48 | 直线型 | 30 | 1.5 | |
等厚分层 | 0.4 | 0.48 | 直线型 | 30 | 1.5 | |
区域分层 | 0.1,0.4 | 0.25,0.48 | 直线型 | 30 | 1.5 | |
半球模型 | 等厚分层 | 0.1 | 0.48 | 直线型 | 30 | 1.5 |
等厚分层 | 0.2 | 0.48 | 直线型 | 30 | 1.5 | |
等厚分层 | 0.3 | 0.48 | 直线型 | 30 | 1.5 | |
等厚分层 | 0.4 | 0.48 | 直线型 | 30 | 1.5 | |
区域分层 | 0.1,0.4 | 0.25,0.48 | 直线型 | 30 | 1.5 | |
奖杯模型 | 均匀密度填充 | 0.3 | 0.48 | 直线型 | 17 | 1.5 |
变密度填充 | 0.3 | 0.48 | 直线型 | 14~47 | 1.5 | |
不规则板 | 均匀密度填充 | 0.3 | 0.48 | 直线型 | 20 | 1.5 |
变密度填充 | 0.3 | 0.48 | 直线型 | 15~50 | 1.5 |
模型 | 分层厚度/mm | 打印线宽/mm | 各测量区域平均粗糙度值/μm | 打印时长/min | 打印耗材/g | |||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||||
半球 | 0.1 | 0.48 | 46.47 | 58.59 | — | — | 102 | 17.63 |
0.2 | 0.48 | 91.47 | 115.21 | — | — | 51 | 17.66 | |
0.3 | 0.48 | 117.97 | 124.26 | — | — | 38 | 17.41 | |
0.4 | 0.48 | 126.27 | 160.87 | — | — | 27 | 18.21 | |
0.1,0.4 | 0.25,0.48 | 59.69 | 47.20 | — | — | 57 | 17.62 | |
工件 | 0.1 | 0.25 | 47.95 | 35.69 | 39.89 | 23.36 | 75 | 6.41 |
0.1 | 0.48 | 46.97 | 31.69 | 25.86 | 45.65 | 69 | 7.67 | |
0.2 | 0.48 | 101.29 | 97.82 | 81.04 | 52.88 | 35 | 7.87 | |
0.3 | 0.48 | 125.72 | 102.67 | 91.37 | 73.49 | 23 | 7.95 | |
0.4 | 0.48 | 131.11 | 118.74 | 126.30 | 119.00 | 17 | 8.23 | |
0.1,0.4 | 0.25,0.48 | 54.77 | 44.87 | 38.97 | 34.29 | 39 | 7.97 |
模型 | 分层厚度/mm | 打印线宽/mm | 各测量区域平均粗糙度值/μm | 打印时长/min | 打印耗材/g | |||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||||
半球 | 0.1 | 0.48 | 46.47 | 58.59 | — | — | 102 | 17.63 |
0.2 | 0.48 | 91.47 | 115.21 | — | — | 51 | 17.66 | |
0.3 | 0.48 | 117.97 | 124.26 | — | — | 38 | 17.41 | |
0.4 | 0.48 | 126.27 | 160.87 | — | — | 27 | 18.21 | |
0.1,0.4 | 0.25,0.48 | 59.69 | 47.20 | — | — | 57 | 17.62 | |
工件 | 0.1 | 0.25 | 47.95 | 35.69 | 39.89 | 23.36 | 75 | 6.41 |
0.1 | 0.48 | 46.97 | 31.69 | 25.86 | 45.65 | 69 | 7.67 | |
0.2 | 0.48 | 101.29 | 97.82 | 81.04 | 52.88 | 35 | 7.87 | |
0.3 | 0.48 | 125.72 | 102.67 | 91.37 | 73.49 | 23 | 7.95 | |
0.4 | 0.48 | 131.11 | 118.74 | 126.30 | 119.00 | 17 | 8.23 | |
0.1,0.4 | 0.25,0.48 | 54.77 | 44.87 | 38.97 | 34.29 | 39 | 7.97 |
打印模型 | 打印方法 | 打印时间/ min | 打印耗材/ g | 最大应力/ MPa | 最大位移/ mm |
---|---|---|---|---|---|
不规则板 | 均匀填充 | 55 | 28.91 | 1 065.80 | 10.002 |
变密度填充 | 56 | 29.61 | 908.08 | 8.489 | |
奖杯模型 | 均匀填充 | 105 | 43.75 | 332.34 | 1.531 |
变密度填充 | 102 | 43.82 | 293.79 | 1.244 |
打印模型 | 打印方法 | 打印时间/ min | 打印耗材/ g | 最大应力/ MPa | 最大位移/ mm |
---|---|---|---|---|---|
不规则板 | 均匀填充 | 55 | 28.91 | 1 065.80 | 10.002 |
变密度填充 | 56 | 29.61 | 908.08 | 8.489 | |
奖杯模型 | 均匀填充 | 105 | 43.75 | 332.34 | 1.531 |
变密度填充 | 102 | 43.82 | 293.79 | 1.244 |
1 | 唐通鸣, 张政, 邓佳文, 等. 基于FDM的3D打印技术研究现状与发展趋势[J]. 化工新型材料, 2015,43(06):228⁃230. |
TANG T M, ZHANG Z, DENG J W,et al. Research status and trend of 3D printing technology based on FDM[J]. New Chemical Materials, 2015,43(06):228⁃230. | |
2 | Zhao Z, Luc Z. Adaptive direct slicing of the solid model for rapid prototyping[J]. International journal of production research, 2000,38(1):69⁃83. |
3 | 李文康, 陈长波, 吴文渊, 等. 有效保留模型特征的自适应分层算法[J]. 计算机应用, 2015,35(08):2 295⁃2 300. |
LI W K, CHEN C B, WU W Y,et al. Adaptive slicing algorithm to retain model characteristics[J]. Journal of Computer Applications, 2015,35(08):2 295⁃2 300. | |
4 | 石立伟. 3D打印成形方向优化与高效切片算法的研究及其软件开发[D]. 宁波:宁波大学, 2021. |
5 | 高海亮, 胡程, 周宇强, 等. 3D打印零件的尺寸精度及控制[J]. 中国塑料,2023,37(08):79⁃85. |
GAO H L, HU C, ZHOU Y Q,et al. Dimensional accuracy and control of 3D printed parts[J]. China Plastics, 2023,37(08):79⁃85. | |
6 | 田仁强, 刘少岗, 张义飞. 增材制造中STL模型三角面片法向量自适应分层算法研究[J]. 机械科学与技术, 2019,38(3):415⁃421. |
TIAN R Q, LIU S G, ZHANG Y F. Research on adaptive layering algorithm of triangular facet normal vector of STL model in additive manufacturing[J]. Mechanical Science and Technology for Aerospace Engineering, 2019,38(3):415⁃421. | |
7 | Li H, Wang T, Sun J, et al. The adaptive slicing algorithm and its impact on the mechanical property and surface roughness of freeform extrusion parts[J]. Virtual and physical prototyping, 2016,11(1):27⁃39. |
8 | 丁承君, 李瑶. 快速成型中保留模型特征的分层算法研究[J]. 现代制造工程, 2019(4):27⁃32. |
DING C J, LI Y. Research on slicing algorithm to keep model features in rapid prototyping[J]. Modern Manufacturing Engineering, 2019(4):27⁃32. | |
9 | 韩江, 王德鹏, 夏链, 等. 防止3D打印模型特征偏移的自适应分层方法[J]. 合肥工业大学学报(自然科学版), 2020,43(01):1⁃6. |
HAN J, WANG D P, XIA L,et al. Adaptive slicing algorithm for preventing feature offset of 3D printing model[J]. Journal of Hefei University of Technology(Natural Science), 2020,43(01):1⁃6. | |
10 | 弋英民,李迎国,刘柏均,等.保留STL模型特征细节的3D打印自适应分层算法[J].西安交通大学学报,2023,57(08):105⁃114. |
GE Y M, LI Y G, LIU B J,et al. Adaptive layering algorithm for 3D printing with stereolithography model feature details retained[J]. Journal of Xi'an Jiaotong University, 2023,57(08):105⁃114. | |
11 | 张晟祺, 解乃军. 基于FDM技术的阶梯效应弱化及特征保留自适应分层算法[J]. 南京工程学院学报(自然科学版), 2023,21(2):27⁃33. |
ZHANG S Q, XIE N J. Adaptive layered algorithm for mitigating staircase effect and preserving features based on FDM Technology[J]. Journal of Nanjing Institute of Technology(Natural Science Edition), 2023,21(2):27⁃33. | |
12 | Lv N, Ouyang X, Qiao Y. Adaptive layering algorithm for FDM-3D printing based on optimal volume error[J]. Micromachines (Basel), 2022,13(6):836. |
13 | 白鹤, 苏亚辉, 王核心, 等. FDM 3D打印工艺参数对PLA制件力学性能的影响[J]. 工程塑料应用, 2020,48(1):68⁃71. |
BAI H, SU Y H, WANG H X,et al. Influence of FDM 3D⁃printing process parameters on mechanical property of PLA sample[J]. Engineering Plastics Application, 2020,48(1):68⁃71. | |
14 | 马秀清, 劳志超, 李明谦, 等. 3D打印工艺参数对PLA/PTW共混物力学性能影响的研究[J]. 中国塑料, 2024,38(02):70⁃75. |
MA X Q, LAO Z C, LI M Q,et al. Effect of 3D printing process parameters on mechanical properties of PLA/PTW blends[J]. China Plastics, 2024,38(02):70⁃75. | |
15 | 张紫阳, 孟家光, 薛涛, 等. 3D打印参数对柔性聚乳酸服装面料力学性能的影响[J]. 合成纤维, 2021,50(4):31⁃34. |
ZHANG Z Y, MENG J G, XUE T,et al. Effects of 3D printing parameters on mechanical property of flexible polylactic acid fabrics[J]. Synthetic Fiber in China, 2021,50(4):31⁃34. | |
16 | 雷经发, 沈强, 刘涛, 等. 熔融沉积工艺参数对热塑性聚氨酯弹性体静动态力学性能的影响[J]. 中国塑料, 2022,36(05):29⁃35. |
LEI J F, SHEN Q, LIU T,et al. Influence of fused deposition process parameters on static and dynamic mechanical properties of thermoplastic polyurethane elastomer[J]. China Plastics, 2022,36(05):29⁃35. | |
17 | 谢仁古丽·麦提图尔荪, 李楠, 乌日开西·艾依提. 3D打印工艺参数对TPU试样力学性能的影响[J]. 机电工程技术, 2023,52(3):30⁃33. |
XIERENGULI M T T E S, Li N, WURIKAIXI A Y T. Effect of 3D printing process parameters on mechanical properties of TPU samples[J]. Mechanical & Electrical Engineering Technology, 2023,52(3):30⁃33. | |
18 | 徐文鹏, 张鹏, 刘懿, 等. 面向3D打印的自支撑连通性填充结构设计[J]. 计算机辅助设计与图形学学报, 2023,35(1):155⁃164. |
XU W P, ZHANG P, LIU Y,et al. Self⁃supporting connectable filling structure design for 3D printing[J]. Journal of Computer⁃Aided Design & Computer Graphic, 2023,35(1):155⁃164. | |
19 | Li D, Dai N, Jiang X, et al. Interior structural optimization based on the density⁃variable shape modeling of 3D printed objects[J]. The International Journal of Advanced Manufacturing Technology, 2016,83(9/12):1 627⁃1 635. |
[1] | WU Xiran, JIA Zhixin, LIU Lijun, LI Jiqiang, ZHAO Chuantao, CHEN Bojie. Analysis of mechanical properties of PP⁃CGFR/PP⁃LGFR⁃integrated over⁃molding products [J]. China Plastics, 2025, 39(5): 1-8. |
[2] | YANG Qinglin, ZHOU Song, LI Canran, YU Wenda, LUO Yumei. Effect of SEBS⁃g⁃MAH on properties and morphology of PPO/PA66 blends [J]. China Plastics, 2025, 39(3): 30-35. |
[3] | ZHANG Xun, LIU Xiang, FANG Mei, GUO Pan, FENG Yuezhan, HUANG Ming, LIU Chuntai. Simulation on mechanical performance of integrated T⁃shaped reinforced wall panel based on carbon fiber reinforced dynamic polymer composites [J]. China Plastics, 2025, 39(3): 53-59. |
[4] | ZHANG Hui, TANG Zhanzhan, BAO Haixia, CHENG Xinyuan, CHEN Bin. Study on degradation of mechanical performance of unplasticized poly(vinyl chloride) pipes at different ambient temperature [J]. China Plastics, 2025, 39(2): 26-31. |
[5] | WANG Chen, HE Qi, LI Jingyao. Application of fused deposition modeling 3D printing in copying shape checker of automotive air conditioning connecting pipe [J]. China Plastics, 2025, 39(2): 40-44. |
[6] | DING Wen. Preparation and application of phosphate⁃waterborne polyurethane flame retardant for coating of cotton fabrics [J]. China Plastics, 2025, 39(2): 82-85. |
[7] | MA Fengan, ZHAO Guanghui, TIAN Cheng, JIA Yuzhe, LIU Tao. Research progress in effect of defects on mechanical properties of continuous⁃fiber⁃reinforced composites [J]. China Plastics, 2025, 39(1): 104-111. |
[8] | HUANG Qizhong. Effect of phosphate nucleating agents on crystallization and mechanical properties of coal⁃based impact⁃resistant copolymerization⁃type polypropylene K8708 [J]. China Plastics, 2025, 39(1): 19-24. |
[9] | GAO Chengtao, XU Qiu, ZHANG Li, LI Jian, HUANG Wei, CHEN Jinsong, LIU Nan, HE Shengbao, CHEN Siyao, PAN Shouhui. Advancements in application of inorganic nanoparticles in biodegradable composites [J]. China Plastics, 2025, 39(1): 85-91. |
[10] | QU Daopeng, ZHANG Tao, HUA Chenxi, SONG Xinyu, CHENG Changli, LIU Yu, WANG Zhenyu. 3D printing of epoxy⁃based composites with high strength and electromagnetic interference shielding ability [J]. China Plastics, 2024, 38(9): 24-29. |
[11] | YU Jiabin, WANG Fei, SHI Wentian, JIANG Yating. Research progress in intelligent manufacture of molds [J]. China Plastics, 2024, 38(7): 100-105. |
[12] | HU Yongxiang, XIE Jiling, LI Weiming, ZHANG Lu, TANG Xianggang, LYU Yitong, SHEN Hongwang, JU Guannan. Effect of maleic anhydride graft⁃modified ground tire rubber on properties of poly(lactic acid) [J]. China Plastics, 2024, 38(7): 20-24. |
[13] | WANG Jie, XIN Dehua, LI Hui, JIANG Hongshi, ZHOU Hongfu, ZHAO Jianguo. Effect of hybrid reinforcement of nanoclay and silica on properties of poly(lactic acid) [J]. China Plastics, 2024, 38(7): 43-48. |
[14] | XU Chen, LUO Bofei, LIU Tengteng, XING Jingkai. Research progress in modification of polypropylene with nucleating agent [J]. China Plastics, 2024, 38(7): 79-85. |
[15] | LIU Ying, SUN Hao, YANG Yong, JIANG Kaiyu, YU Tongmin, MA Sai, ZHU Tieli. Effect of ultrasonic vibration on mechanical properties of injection⁃molded parts of glass⁃fiber⁃reinforced polyamide 6 [J]. China Plastics, 2024, 38(7): 9-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||