京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2022, Vol. 36 ›› Issue (3): 146-156.DOI: 10.19491/j.issn.1001-9278.2022.03.023
• Review • Previous Articles Next Articles
WANG Fuyu, GUO Jinqiang, ZHANG Yuxia()
Received:
2022-02-27
Online:
2022-03-26
Published:
2022-03-25
CLC Number:
WANG Fuyu, GUO Jinqiang, ZHANG Yuxia. In⁃situ fibrillation methods of polymer blends and their application in PP⁃based blends[J]. China Plastics, 2022, 36(3): 146-156.
拉伸速率/m•min-1 | PA6微纤平均直径/μm | PA6微纤平均直径/μm |
---|---|---|
6 | 16.4 | 9.15 |
12 | 21.6 | 5.77 |
18 | 22.8 | 2.92 |
24 | 24.7 | 2.46 |
30 | 22.6 | 2.15 |
拉伸速率/m•min-1 | PA6微纤平均直径/μm | PA6微纤平均直径/μm |
---|---|---|
6 | 16.4 | 9.15 |
12 | 21.6 | 5.77 |
18 | 22.8 | 2.92 |
24 | 24.7 | 2.46 |
30 | 22.6 | 2.15 |
1 | 王国全. 聚合物共混改性原理与应用[M]. 北京:中国轻工业出版社,2007:1⁃3. |
2 | 张声莹,李姜红,赵大江,等.原位微纤复合材料的研究进展[J].广州化工,2016,44(10):5⁃8. |
ZHANG S Y, LI J H, ZHAO D J, et al. Research progress on polymer in⁃situ microfiber composites[J]. Guangzhou Chemical Industry,2016,44(10):5⁃8. | |
3 | 潘燕.原位拉伸聚合物结构与性能研究[D].重庆:重庆理工大学,2013. |
4 | KISS G. In situ composites: blends of isotropic polymers and thermotropic liquid crystalline polymers[J]. Polymer Engineering & Science,1987,27(6):410⁃423. |
5 | WEISS R A, HUH W, NICOLAIS L. Novel reinforced polymers based on blends of polystyrene and a thermotropic liquid crystalline polymer[J]. Polymer Engineering and Science,1987,27(9):684⁃691. |
6 | 练兴瀚. 原位纳纤化PLA基共混材料的制备及其性能研究[D]. 广州:华南理工大学,2020. |
7 | LI Z, SHI Y J, SUN C X,et al. In situ micro and nano fibrillar reinforced elastomer composites based on polypropylene (PP)/olefinic block copolymer (OBC)[J]. Composi⁃tes Science & Technology, 2015, 115:34⁃42. |
8 | 张婷婷 .原位微纤增强EVA复合材料的微纤形态和性能研究[D].贵阳:贵州大学,2018. |
9 | 张爽,冯钠,刘俊龙,等.原位成纤复合材料研究进展[J].橡塑与技术装备,2005,31(12):25⁃30. |
ZHANG S, FENG N, LIU J L, et al. The progress of research on the on⁃site fiber forming composite materials[J]. Chnia Rubber/Plastics Technology and Equipment,2005,31(12):25⁃30. | |
10 | LI M F, XIAO R, SUN G. Morphology development and size control of poly (trimethylene terephthalate) nanofibers prepared from poly (trimethylene terephthalate)/cellulose acetate butyrate in⁃situ fibrillar composites[J]. Journal of Materials Science, 2011,46(13):4 524⁃4 531. |
11 | 董珈豪,戚远慧,韦良强,等.分散相含量对POE/PTT原位增强复合材料性能的影响[J]. 中国塑料,2016,30(6):57⁃62. |
DONG J H, QI Y H, WEI L Q, et al. Effect of contents of dispersed phase on properties of ptt/poe in⁃situ fiber reinforced composite[J]. China Plastics, 2016,30(6):57⁃62. | |
12 | 王国全.聚合物共混改性原理与应用[M].中国轻工业出版社,2016,55⁃58. |
13 | 刘渝,黄安荣,韦良强,等.黏度比对EVA/PP原位微纤复合材料形态及性能的影响[J]. 塑料工业,2018,46(8):43⁃46. |
LIU Y, HUANG A R, WEI L Q, et al. The effect of viscosity ratio on the morphology and properties of EVA/PP in⁃situ microfibillar composites[J]. China Plastics Industry,2018,46(8)43⁃46. | |
14 | 张玲,黄锐.新型热塑性弹性体增韧PP的原位成纤[J]. 塑料,2000,29,(5):37⁃38. |
ZHANG L, HUANG R. Fibrillating of new thermoplastic elastomer toughening PP[J]. Plastics,2000,29(5):37⁃38. | |
15 | 易新,王玉领,钟淦基,等. 增容剂对PP/PET原位微纤化共混物的影响[J]. 中国塑料,2009,23(11):21⁃25. |
YI X, WANG Y L, ZHONG G J, et al. Effect of compatibilizer on in⁃situ microfibrillated polypropylene/poly(ethylene terephthalate)blend[J]. China Plastics,2009,23(11):21⁃25. | |
16 | 贾世奎,王忠,朱艳,等.原位增强PLA/PBS合金的微观形态及力学性能研究[J]. 塑料工业,2016,44(9):32⁃36. |
JIA S K, WANG Z, ZHU Y, et al. Morphology and mechanical properties of PLA/PBS alloy via in⁃situ reinforcement[J]. China Plastics Industry,2016,44(9):32⁃36. | |
17 | 赵均乐. 原位微纤化LLDPE/PET共混物的反应增容[D]. 青岛:青岛科技大学,2012. |
18 | 王占杰.原位成纤复合技术改善聚丙烯的加工行为及力学性能[D].青岛:青岛科技大学,2010. |
19 | 黄英. 三螺杆直接挤出原位成纤机理及微纤复合体系结构与性能的研究[D]. 北京:北京化工大学,2017. |
20 | 李忠明,杨鸣波,卢忠远,等.热拉伸比对PET/PE原位微纤化复合材料形态和拉伸性能的影响[J]. 复合材料学报,2005,22(3):9⁃15. |
LI Z M, YANG M B, LU Z Y, et al. Influence of hot stretch ratio on morphology and tensile properties pf poly (ethylene terephthalate) and polyethylene intu microfibrillar composite[J]. Acta Materiae Compositae Sinica, 2005,22(3):9⁃15. | |
21 | SUN J, LUO S S, HUANG A R, et al. Effect of stretching speed on morphologies and properties of in situ microfibrillar POE/PLA composites[J]. Journal of Thermoplastic Composite Materials,2020:1⁃13. |
22 | 任曙霞.PTT/PE共混及原位微纤材料的制备及性能研究[D]. 上海:东华大学,2010. |
23 | 孙永锋,王益龙,王爱平. HDPE/PA6原位微纤共混物的制备与性能[J].现代塑料加工应用,2013,25(3):5⁃8. |
SUN Y F, WANG Y L, WANG A P. Preparation and properties of HDPE/PA6 in situ micro-fibrillar blend[J]. Modern Plastic Processing and Applications, 2013,25(3):5⁃8. | |
24 | 戚远慧,董珈豪,罗筑,等.PA11含量对PA11/PP原位成纤复合材料性能的影响[J]. 现代塑料加工应用,2015,27(6):9⁃12. |
QI Y H, DONG J H, LUO Z, et al. Effects of PA11 contens on in⁃situ fiberized PA11/PP composites[J]. Modern Plastic Processing and Applications, 2015,27(6):9⁃12. | |
25 | 黄安荣,韦良强,石文建. HDPE/PA6复合材料形态及力学性能研究[J].化工新型材料,2015,43(7):147⁃150. |
HUANG A R, WEI L Q, SHI J W, et al. Study on mophology and mechanical properties of HDPE/PA6 compo⁃site[J]. New Chemical Materials,2015,43(7):147⁃150. | |
26 | 李春海,吴宏,李姜,等. 多级双向拉伸挤出系统在聚合物加工中的应用进展[J]. 高分子材料科学工程,2021,37(1):349⁃358,374. |
LI C H, WU H, LI J, et al. Recent progress of multi⁃stage biaxial stretch extrusion system in the polymer processing[J]. Polymer Materials Science and Engineering,2021,37(1):349⁃358,374. | |
27 | 申开智, 官青, 吉继亮, 等. 低压动态保压注射模塑ABS的自增强[J].工程塑料应用,1995(1):12⁃15. |
28 | 刘欢,王益龙,于雅萍,等.通过挤出机头强剪切制备LDPE/PET原位微纤复合材料[J]. 现代塑料加工应用,2018,30(1):34⁃37. |
LIU H, GUAN Q, YU Y P, et al. Preparation of LDPE/PET in⁃situ microfibril composites by high shear extrusion head[J]. Modern Plastics Processing and Applications, 2018,30(1):34⁃37. | |
29 | 刘欢,王益龙,刘冰,等. 挤出加工方法对制备PP/PET原位微纤共混物微观形态的影响[J]. 中国塑料,2018,32(2):81⁃85. |
LIU H, WANG Y L, LIU B, et al. Effect of extrusion processing methods on microfibrillar micromorphology of PP/PET blends[J]. China Plastics, 2018,32(2):81⁃85. | |
30 | SCHRENK W J, ALFREY T J, et al. Polymer blends[M]. New York: Academic,1987: 129⁃164. |
31 | 韦良强,黄安荣,秦舒浩,等.微纳层叠共挤制备HDPE/PA6原位成纤复合材料的形态及性能研究[C]//第十五届中国科协年会第17分场:复合材料与节能减排研讨会论文集.贵阳:《中国学术期刊(光盘版)》电子杂志社,2013,1⁃6. |
32 | 黄安荣,韦良强,罗筑,等.分散相含量对HDPE/PA6原位成纤增强复合材料性能的影响[J].塑料工业,2013,41(8):15⁃19. |
HUANG A R, WEI L Q, LUO Z, et al. Effect of contents of dispersed phase on properties of HDPE/PA6 in⁃situ fiber reinforced composites[J].China Plastics Industry, 2013,41(8):15⁃19. | |
33 | 黄安荣,韦良强,秦舒浩,等. 微纳叠层制备HDPE/PA6原位成纤复合材料的形态及性能[J].塑料工业,2013,41(7):27⁃30. |
HUANG A R, WEI L Q, QIN S H. Morphology and properties of HDPE/PA6 in⁃situ fiberized composites based on micro⁃nano laminated [J].China Plastics Industry, 2013,41(7):27⁃30. | |
34 | SHEN J B, WANG M, LI J, et al. In situ fibrillation of polyamide 6 in isotactic polypropylene occurring in the lami⁃nating⁃multiplying die[J]. Polymers Advanced Technologies, 2011, 22:237⁃245. |
35 | 李婷,李姜,张玉清,等. 微层共挤出(PP+EVOH)/PP阻隔材料的结构与性能研究[J]. 高分子学报,2009,12:1 226⁃1 231. |
LI T, LI J, ZHANG Y Q G, et al. Structure and properties of (PP+EVOH)/PP barrier material prepared by microlayer coextrusion[J]. Acta Polymerica Sinica, 2009,12:1 226⁃1 231. | |
36 | 孙小杰.多级拉伸PP/PA1010/CB 原位微纤复合材料结构与导电性能的研究[C]// 2010 年全国高分子材料科学与工程研讨会,南昌:2010,143⁃145. |
37 | 孙义明,谢霞,段玉情,等. MAH原位增容PP/PA6共混体系力学性能研究[J]. 湖州工业大学学报,2011,26(5):1⁃3. |
SUN Y M, XIE X, DUAN Y Q, et al. A study of mechanical properties of PP/PA6 blending system situ⁃compatibilized with MAH[J]. Journal of Hubei University of Technology,2011,26(5):1⁃3. | |
38 | 查小月,张照,彭娅,等. PP/PA6共混体系中的增容改性研究进展[J]. 塑料工业,2015,43(9):5⁃9,14. |
CHA X Y, ZHANG Z, PENG Y, et al. The research progress on compatibilizing modification of PP/PA6 blends[J]. china plastics industry,2015.43(9):5⁃9,14. | |
39 | 王玉,孙文杰,马玉录,等.增容作用对PP/PA6原位微纤复合材料形貌及性能的影响[J]. 中国塑料,2021,35(5):1⁃5. |
WANG Y, SUN W J, MA Y L, et al. Effect of compatibilizer on morphology and performance of PP/PA6 microfibrillar composites[J]. China Plastics,2021,35(5):1⁃5. | |
40 | 孙显茹,熊彦可,张昊,等.PA6原位成纤复合改善PP的力学性能[J].合成树脂及塑料,2012,29(3):57⁃60. |
SUN X R, XIONG Y K, ZHANG H,et al. Mechanical properties of polypropylene modified with polyamide 6 by in⁃situ fibrillation method[J]. China Synthetic Resin and Plastics,2012,29(3):57⁃60. | |
41 | 孙显茹,宋中心,张昊,等.PA6原位成纤改善PPR的挤出流变性能[J].现代塑料加工应用,2012,24(2):5⁃8. |
SUN X R, SONG Z X, ZHANG H, et al. Extrusion rheological properties of PPR modified with in⁃situ fibrillation composite of PA6[J]. Modern Plastics Processing and Applications, 2012,24(2):5⁃8. | |
42 | 孙显茹.PA6原位成纤复合改善PP的挤出流变性能和力学性能[D]. 青岛:青岛科技大学,2012. |
43 | 黎学冬,陈呜才,黄玉惠. 拉伸作用对PP/PA6原位成纤复合体系的影响[J]. 高分子材料科学与工程,1999,15(4):78⁃80,83. |
LI X D, CHEN W C, HUANG Y C, et al. Study of the polymer degree of polyphenyl phosphates and the flame retardancy[J]. Polymer Materials Science and Engineering,1999,15(4):78⁃80,83. | |
44 | 孙显茹,王占杰,刘祥贵,等.原位成纤复合法改善聚丙烯的力学性能[J].合成树脂及塑料,2011,28(3):58⁃61. |
SUN X R, WANG Z J, LIU G X, et al. Improvement of mechanical properties of polypropylene by in⁃situ fibrillation[J]. China Synthetic Resin and Plastics,2011,28(3):58⁃61. | |
45 | RIZVIA A, PARKA C B, FAVIS B D. Tuning viscoelastic and crystallization properties of polypropylene containing in⁃situ generated high aspect ratio polyethylene terephthalate fibrils[J]. Polymer,2015(68):83⁃91. |
46 | ZHANG A M, CHAI J L, YANG C X, et al. Fibrosis mechanism, crystallization behavior and mechanical properties of in⁃situ fibrillary PTFE reinforced PP composites[J]. Materials & Design,2021,211:110157. |
47 | 张贻舟.PP/ABS纳米微纤复合材料的制备及功能化研究[D].长沙:湘潭大学,2016. |
48 | 邢栋.聚苯硫醚(PPS)原位成纤复合材料性能研究[D].大连:大连工业大学,2010. |
49 | 戚远慧,黄安荣,朱永军,等. LLDPE/PA66原位成纤复合材料形态及性能研究[J]. 现代塑料加工应用,2014,26(6):16⁃18. |
QI Y H, HUANG A R, ZHU Y J, et al. Morphology and properties of LLDPE/PA66 in⁃situ fiberized composi⁃tes[J]. Modern Plastic Processing and Applications,2014,26(6):16⁃18. | |
50 | 罗卫,黄象安 .PE/PBT原位成纤增强复合材料的形态和力学性能研究[J].合成纤维,2010 ( 12) : 18⁃21. |
LUO W, HUANG X A. Study on morphology and mechanical properties of PE/PBT in⁃situ fiber reinforced composites [J]. Synthetic Fiber, 2010(12):18⁃21. | |
51 | LI Z M, YANG M B, HUANG R,et a1.In⁃situ composite based on poly ( ethylene terephthalate ),polyamide and polyethylene with microfibers formed through extrusion and hot stretching[J]. J Mater Sci Technol,2002,18 (5) : 419⁃423. |
52 | ZHOU SY, HUANG H D JI X,et al. Super⁃robust polylactide barrier films by building densely oriented lamellae incorporated with ductile in situ nanofibrils of poly (butylene adipate⁃co⁃terephthalate) [J]. ASC Applied Materials & Interfaces, 2016,8,8 096⁃8 109. |
53 | WANG J F, ZHANG X L, ZHAO T B, et al. Morpho⁃logies and properties of polycarbonate/polyethylene in situ microfibrillar composites prepared through multistage stretching extrusion[J]. Journal of Applied Polymer Science, 2014, 131: 2 113⁃2 124. |
54 | KELNAR I, KAPRÁLKOVÁ L, KRATOCHVÍL J, et al. Effect of layered silicates and reactive compatibilization on structure and properties of melt⁃drawn HDPE/PA6 microfibrillar composites[J]. Polymer Bulletin, 2016, 73(6): 1 673⁃1 688. |
55 | ZHOU S Y, NIU B, XIE X L, et al. Interfacial shish⁃kebabs lengthened by coupling effect of in situ flexible nanofibrils and intense shear flow: achieving hierarchy to conquer the conflicts between strength and toughness of polylactide[J]. ASC Applied Materials & Interfaces, 2017, 9, 10 148⁃10 159. |
56 | CHEN Y, SUN Z B, LI Y S, et al. Tuning wettability and mechanical property of polylactide composite films with in⁃situ nanofibrils of poly(butylene adipate⁃co⁃terephthalate[J]. Composites Communications,2020,22:100515. |
[1] | WU Wei, HU Huanbo, SHEN Hui, ZHAO Tianyu. Dual⁃synergistic effect of 4A zeolite and Ca⁃Mg⁃Al hydrotalcite on intumescent flame retardant PP and its mechanism [J]. China Plastics, 2022, 36(7): 1-7. |
[2] | YU Changyong, XIN Zhong. Effect of α/β complex nucleating agent based on hexahydrophthalate on properties of polypropylene [J]. China Plastics, 2022, 36(7): 121-128. |
[3] | TAN Liqin, LIU Weiqu, LIANG Liyan, WANG Shuo, FENG Zhiqiang, LIN Jiaming. Preparation and performance of epoxy resin modified with mercaptan polysiloxane [J]. China Plastics, 2022, 36(7): 21-29. |
[4] | LIU Yi, SUN Wei, QU Guoxing, WANG Ye, YUAN Ning, YANG Shaolin, XU Xia, CHANG Xiaoyi, ZHANG Yufei. Structure and performance analysis of transparent polypropylene special material for thin⁃wall injection molding [J]. China Plastics, 2022, 36(7): 37-43. |
[5] | XU Jie, ZHONG Jinfu, TONG Xiaoqian, LI Guangfu, FU Dongliang, LI Chengcheng. Preparation and performance of carboxyl⁃terminated tannic acid/gallic acid⁃based epoxy composite [J]. China Plastics, 2022, 36(7): 44-50. |
[6] | LI Kaize, XIN Yong. Properties of thermoplastic polyurethane composites modified with carbon nanotubes [J]. China Plastics, 2022, 36(6): 1-5. |
[7] | WANG Shuai, ZHANG Yudi, YANG Fukai, XU Xinyu. Preparation and properties of polyimide/multi⁃walled carbon nanotubes composite foams [J]. China Plastics, 2022, 36(6): 39-45. |
[8] | SUN Wei, LIU Yi, LIAO Yunlong, CHEN Junjia. Study on influence factors for determination of ethylene content in polypropylene powder [J]. China Plastics, 2022, 36(6): 54-59. |
[9] | WANG Jinye, TANG Bohu, YANG Lining, XIE Meng, GUO Zechao, YANG Guang. Study on multi⁃jet⁃fusion forming process of PA12 parts [J]. China Plastics, 2022, 36(6): 81-86. |
[10] | SUN Wenbo, XIN Chunling, HE Yadong, ZHAI Yujiao, YAN Baorui. Influence of micro⁃foaming injection molding process on cell structure of glass⁃fiber⁃reinforced PBT products [J]. China Plastics, 2022, 36(5): 1-7. |
[11] | WANG Ke, LONG Chunguang. Mechanical and tribological properties of ultra⁃high molecular weight polyethylene/sepiolite fiber composites [J]. China Plastics, 2022, 36(5): 19-23. |
[12] | CHEN Sheng, LIANG Yingchao, WU Fangjuan, FANG Hui, FAN Xinfeng, CHEN Hui, WANG Yonggang. Preparation and interfacial modification of polyamide 6/bidirectional warp⁃knitted glass fiber composites [J]. China Plastics, 2022, 36(5): 24-28. |
[13] | HE Hezhi, XU Li, YANG Yike. Effect of prestress on mechanical properties of PC/CF laminates [J]. China Plastics, 2022, 36(4): 1-5. |
[14] | WANG Qingsong. Development of glass⁃fiber⁃reinforced polypropylene with high strength and low VOC [J]. China Plastics, 2022, 36(4): 30-34. |
[15] | LI Suyuan, LIU Huipeng, GONG Shun, HUANG Guotao, LI Yucai, WU Xin, DENG Jianping, PAN Kai. Preparation and characterization of EVA foaming materials modified with thermoplastic polyamide elastomer [J]. China Plastics, 2022, 36(4): 6-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||