京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2023, Vol. 37 ›› Issue (11): 101-116.DOI: 10.19491/j.issn.1001-9278.2023.11.012
• Plastic and Environment • Previous Articles Next Articles
ZHU Guangze1(), ZHOU Wei1, XIA Zhidong1(
), WANG Xiaolu1, LI Bingyi1, GUO Fu1, WU Yufeng1,2
Received:
2023-05-23
Online:
2023-11-26
Published:
2023-11-22
CLC Number:
ZHU Guangze, ZHOU Wei, XIA Zhidong, WANG Xiaolu, LI Bingyi, GUO Fu, WU Yufeng. Current situation and prospect of pyrolysis analysis technology of organic wastes[J]. China Plastics, 2023, 37(11): 101-116.
名称 | 缩写 | 元素组成 | 化学结构 | 常见用途 |
---|---|---|---|---|
聚对苯二甲酸乙二醇酯 | PET | C、H、O | ![]() | 饮料瓶等 |
高密度聚乙烯 | PE⁃HD | C、H | ![]() | 塑料袋、清洁用品等 |
聚氯乙烯 | PVC | C、H、Cl | ![]() | 雨衣、塑料膜等 |
低密度聚乙烯 | PE⁃LD | C、H | ![]() | 保鲜膜、塑料膜等 |
聚丙烯 | PP | C、H | ![]() | 餐盒等 |
聚苯乙烯 | PS | C、H | ![]() | 泡面盒、餐盒等 |
聚氨酯类 | PU | C、H、O、N | ![]() | 保温材料、实心轮胎等 |
天然橡胶(以顺⁃1,4⁃聚异戊二烯为主要成分的天然高分子化合物) | NR | C、H | ![]() | 轮胎、密封装备、防震装备等 |
名称 | 缩写 | 元素组成 | 化学结构 | 常见用途 |
---|---|---|---|---|
聚对苯二甲酸乙二醇酯 | PET | C、H、O | ![]() | 饮料瓶等 |
高密度聚乙烯 | PE⁃HD | C、H | ![]() | 塑料袋、清洁用品等 |
聚氯乙烯 | PVC | C、H、Cl | ![]() | 雨衣、塑料膜等 |
低密度聚乙烯 | PE⁃LD | C、H | ![]() | 保鲜膜、塑料膜等 |
聚丙烯 | PP | C、H | ![]() | 餐盒等 |
聚苯乙烯 | PS | C、H | ![]() | 泡面盒、餐盒等 |
聚氨酯类 | PU | C、H、O、N | ![]() | 保温材料、实心轮胎等 |
天然橡胶(以顺⁃1,4⁃聚异戊二烯为主要成分的天然高分子化合物) | NR | C、H | ![]() | 轮胎、密封装备、防震装备等 |
方法 | 升温模式 | 特点 | 可获得信息 |
---|---|---|---|
热重分析法 | 线性升温 | 结果直观稳定 | 物质相变过程、热损失率 |
传统差示扫描量热法 | 线性升温 | 灵敏度低、解析度低,只反映表观现象 | 吸放热、热容变化过程、物质相变过程 |
调制差示扫描量热法 | 平均慢速升温、瞬时交变正弦升温 | 灵敏度高、解析度高,测量准确,能够分离相互覆盖的转变 | 吸放热、热容变化过程、物质相变过程、总热流、震荡热流、可逆热流、不可逆热流等 |
差热分析法 | 等速升温 | 稳定 | 吸放热 |
方法 | 升温模式 | 特点 | 可获得信息 |
---|---|---|---|
热重分析法 | 线性升温 | 结果直观稳定 | 物质相变过程、热损失率 |
传统差示扫描量热法 | 线性升温 | 灵敏度低、解析度低,只反映表观现象 | 吸放热、热容变化过程、物质相变过程 |
调制差示扫描量热法 | 平均慢速升温、瞬时交变正弦升温 | 灵敏度高、解析度高,测量准确,能够分离相互覆盖的转变 | 吸放热、热容变化过程、物质相变过程、总热流、震荡热流、可逆热流、不可逆热流等 |
差热分析法 | 等速升温 | 稳定 | 吸放热 |
作者 | 材料 | 方法 | 活化能/kJ·mol-1 | 平均活化能/ kJ·mol-1 | 文献 |
---|---|---|---|---|---|
MENARES Tamara | 废轮胎 | Starink | 102~177 | 153 | [ |
Tang X J | 废橡胶(RT)轮胎 | FWO、KAS | 134~345 | 260、262 | [ |
PUT轮胎 | Starink、FWO | 152~254 | 205 | ||
Chen J W | 废轮胎 | FWO、KAS | 149~244 147~245 | 200 | [ |
SINGH Gajendra | 废牛奶盒 | KAS、FWO | 134~299 | 175~178 | [ |
Yao Z T | 废电视塑料外壳 | FWO、KAS | 166~337 | 214~218 | [ |
DAS Pallab | PE⁃LD | FWO、KAS、Starink | 165~242 162~242 148~222 | — | [ |
PE⁃HD | FWO、KAS、Starink | 146~242 146~241 146~240 | |||
PP | FWO、KAS、Starink | 140~176 136~173 136~173 | |||
PLA | FWO、KAS、Starink | 113~129 99~113 108~124 | |||
ABOULKAS A | PP | KAS、FWO、Starink | 158~186 163~190 175~198 | 179、183、188 | [ |
作者 | 材料 | 方法 | 活化能/kJ·mol-1 | 平均活化能/ kJ·mol-1 | 文献 |
---|---|---|---|---|---|
MENARES Tamara | 废轮胎 | Starink | 102~177 | 153 | [ |
Tang X J | 废橡胶(RT)轮胎 | FWO、KAS | 134~345 | 260、262 | [ |
PUT轮胎 | Starink、FWO | 152~254 | 205 | ||
Chen J W | 废轮胎 | FWO、KAS | 149~244 147~245 | 200 | [ |
SINGH Gajendra | 废牛奶盒 | KAS、FWO | 134~299 | 175~178 | [ |
Yao Z T | 废电视塑料外壳 | FWO、KAS | 166~337 | 214~218 | [ |
DAS Pallab | PE⁃LD | FWO、KAS、Starink | 165~242 162~242 148~222 | — | [ |
PE⁃HD | FWO、KAS、Starink | 146~242 146~241 146~240 | |||
PP | FWO、KAS、Starink | 140~176 136~173 136~173 | |||
PLA | FWO、KAS、Starink | 113~129 99~113 108~124 | |||
ABOULKAS A | PP | KAS、FWO、Starink | 158~186 163~190 175~198 | 179、183、188 | [ |
反应机理 | 符号 | G(α) | |
---|---|---|---|
化学反应机理 | 一步反应 | F1 | -ln(1-α) |
一步半反应 | F1.5 | 2[(1-α)-1/2-1] | |
两步反应 | F2 | (1-α)-1-1 | |
三步反应 | F3 | [(1-α)-2-1]/2 | |
扩散机理 | 一维扩散 | D1 | α2 |
二维扩散 | D2 | (1-α)ln(1-α)+α | |
三维扩散 | D3 | [1-(1-α)1/3]2 | |
四维扩散 | D4 | 1-(2/3)α-(1-α)2/3 | |
幂率 | 1/2幂定律反应 | P2 | α1/2 |
1/3幂定律反应 | P3 | α1/3 | |
指数定律反应 | P4 | α1/4 | |
相界面反应机理 | 一维反应 | R1 | α |
二维反应 | R2 | 1-(1-α)1/2 | |
三维反应 | R3 | 1-(1-α)1/3 | |
随机成核与生长反应机理 | 成核生长(n=1.5) | A1.5 | [-ln(1-α)]2/3 |
成核生长(n=2) | A2 | [-ln(1-α)]1/2 | |
成核生长(n=3) | A3 | [-ln(1-α)]1/3 | |
成核生长(n=4) | A4 | [-ln(1-α)]1/4 |
反应机理 | 符号 | G(α) | |
---|---|---|---|
化学反应机理 | 一步反应 | F1 | -ln(1-α) |
一步半反应 | F1.5 | 2[(1-α)-1/2-1] | |
两步反应 | F2 | (1-α)-1-1 | |
三步反应 | F3 | [(1-α)-2-1]/2 | |
扩散机理 | 一维扩散 | D1 | α2 |
二维扩散 | D2 | (1-α)ln(1-α)+α | |
三维扩散 | D3 | [1-(1-α)1/3]2 | |
四维扩散 | D4 | 1-(2/3)α-(1-α)2/3 | |
幂率 | 1/2幂定律反应 | P2 | α1/2 |
1/3幂定律反应 | P3 | α1/3 | |
指数定律反应 | P4 | α1/4 | |
相界面反应机理 | 一维反应 | R1 | α |
二维反应 | R2 | 1-(1-α)1/2 | |
三维反应 | R3 | 1-(1-α)1/3 | |
随机成核与生长反应机理 | 成核生长(n=1.5) | A1.5 | [-ln(1-α)]2/3 |
成核生长(n=2) | A2 | [-ln(1-α)]1/2 | |
成核生长(n=3) | A3 | [-ln(1-α)]1/3 | |
成核生长(n=4) | A4 | [-ln(1-α)]1/4 |
1 | Mirkarimi A S M R, Bensad A S, Chiaramont D. Conversion of mixed waste plastic into fuel for diesel engines through pyrolysis process: A review[J]. Applied Energy, 2022, 327:120040 |
2 | 王红秋, 付凯妹.新形势下我国废塑料回收利用产业现状与思考[J]. 塑料工业,2022,50(6):38⁃42 |
WANG H Q, FU K M. Status quo and thinking of China's waste plastic recycling recycling industry under the new situation [J]. Plastics Industry, 2022,50(6): 38⁃42. | |
3 | 李超.废塑料循环或将成为白色污染“终结者”[J]. 石油石化绿色低碳,2022,7(3):1⁃5,16. |
LI C. Recycling of waste plastics may become the "terminator" of white pollution[J]. Petroleum and Petrochemical Green and Low Carbon, 2022, 7(3): 1⁃5,16. | |
4 | 崔华松.挥发性有机物的污染现状及治理策略研究[J]. 清洗世界,2023,39(2):77⁃79. |
CUI H S. Research on the pollution status and treatment strategies of volatile organic compounds[J]. Clean World, 2023,39(2): 77⁃79. | |
5 | YOUSEF Samy, EIMONTAS Justas, STRIUGAS Nerijus, et al. Pyrolysis kinetic behaviour, TG⁃FTIR, and GC/MS analysis of cigarette butts and their components[J]. Biomass Conversion and Biorefinery, 2021, 156:105⁃118. |
6 | DIAS Pablo, JAVIMCZIK Selene, BENEVIT Mariana, et al. Recycling WEEE: Polymer characterization and pyrolysis study for waste of crystalline silicon photovoltaic modules[J]. Waste Manag, 2017, 60:716⁃722. |
7 | Du Y F, Ju T Y, Yuan M, et al. Pyrolysis characteristics of excavated waste and generation mechanism of gas products[J]. SSRN Electronic Journal, 2022, 370:133489. |
8 | 邢语彤,张一唯,卢平. 粘胶纤维/杨木共水热炭的燃烧和热解特性[J/OL]. 环境工程, 2023: 1⁃10. |
XING Y T, ZHANG Y W, LU P. Combustion and pyrolysis characteristics of viscose fiber/poplar wood co hydrothermal carbon[J/OL]. Environmental Engineering, 2023: 1⁃10 | |
9 | Reshad ALI, PANKA Tiwari, V.Goud VAIBHAV. Thermal and co⁃pyrolysis of rubber seed cake with waste polystyrene for bio⁃oil production[J]. Analytical and Applied Pyrolysis, 2019, 139:333⁃343. |
10 | DADI Suriapparao, KUMAR Dharavath, VINU Ravikrishnan. Microwave co⁃pyrolysis of PET bottle waste and rice husk: effect of plastic waste loading on product formation[J]. Sustainable Energy Technologies and Assessments,2021, 49:101781. |
11 | Zhou J J, Liu G J, Xu F F, et al. TG⁃FTIR and Py⁃GC/MS study of the pyrolysis mechanism and composition of volatiles from flash pyrolysis of PVC[J]. Energy Institute, 2020, 175:288⁃297. |
12 | 李丹. 废橡塑热解机理及多环芳烃生成机制研究[D]. 天津:天津大学, 2021. |
13 | YOUSELF Samy, IEVA Kiminaitė, JUSTAS Eimontas, et al. Recovery of phenol and acetic acid from glass fibre reinforced thermoplastic resin using catalytic pyrolysis process on ZSM-5 zeolite catalyst and its kinetic behaviour[J]. Thermochimica Acta, 2022, 715:179293. |
14 | Peng H M, Li P L, Yang Q. Pyrolysis of polyester and viscose fiber over ZSM-5: synergistic effect and distribution of products[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147:12 535⁃12 545. |
15 | 赵菲菲, 冯自松, 陈金海. 生活垃圾焚烧发电厂二噁英近零排放技术研究[J]. 环境科学与管理, 2016, 41(4):78⁃81. |
ZHAO F F, FENG Z S, CHEN J H. Study on near⁃zero dioxin emission technology in domestic waste incineration power plant[J]. Environmental Science and Management, 2016, 41(4):78⁃81. | |
16 | 范春龙, 钱立新, 丁龙, 等. 废铜漆包线热解烟气中二噁英的排放特性与减排机理[J/OL]. 中国环境科学, 2023. |
FAN C L, QIAN L X, DING L, et al. Emission characteristics and emission reduction mechanism of dioxins in pyrolysis flue gas of scrap copper enameled wire[J/OL]. China Environmental Science, 2023:19674. | |
17 | 邓悠娴. PVC热处理脱氯抑制二噁英生成技术[D]. 兰州:兰州大学, 2021. |
18 | 陈春燕, 谢煜婷. 有机固废气化装置及污染治理实施的研究[J]. 资源节约与环保, 2022, 8:84⁃87. |
CHEN C Y, XIE Y T. Research on organic solid waste gasification device and pollution control implementation[J]. Resource Conservation and Environmental Protection, 2022, 8:84⁃87. | |
19 | Paladino Ombretta, Moranda Arianna. Human health risk assessment of a pilot⁃plant for catalytic pyrolysis of mixed waste plastics for fuel production[J]. Hazard Mater,2021, 405:124222. |
20 | 谢启源, 陈丹丹, 丁延伟. 热重分析技术及其在高分子表征中的应用[J]. 高分子学报, 2022,53(2):193⁃ 210. |
XIE Q Y, CHEN D D, DING Y W. Thermogravimetric analysis technology and its application in polymer characterization[J]. Journal of Polymer Science, 2022, 53 (2): 193⁃210. | |
21 | 赵凤杰,刘剑.煤的热重分析技术及其应用[J].辽宁工程技术大学学报,2005,(S2):25⁃27. |
ZHAO F J, LIU J. Thermogravimetric analysis technology and its application of coal[J]. Journal of Liaoning University of Engineering and Technology, 2005, (S2): 25⁃27. | |
22 | 成青.热重分析技术及其在高分子材料领域的应用[J].广东化工,2008,35(12):50⁃52,81. |
CHENG Q. Thermogravimetric analysis technology and its application in the field of polymer materials[J]. Guangdong Chemical Industry, 2008, 35 (12): 50⁃52,81. | |
23 | Chen R Y, Xu X K, Lu S X, et al. Pyrolysis study of waste phenolic fibre⁃reinforced plastic by thermogravimetry/Fourier transform infrared/mass spectrometry analysis[J]. Energy Conversion and Management, 2018, 165(1):555⁃566. |
24 | Wu X J, BOURBIGOT S, LI K Y, et al. Co⁃pyrolysis characteristics and flammability of polylactic acid and acrylonitrile⁃butadiene⁃styrene plastic blend using TG, temperature⁃dependent FTIR, Py⁃GC/MS and cone calorimeter analyses[J]. Fire Safety Journal, 2022, 128:103543. |
25 | Tang X J, Cheng Z H, Liu J Y, et al. Dynamic pyrolysis behaviors, products, and mechanisms of waste rubber and polyurethane bicycle tires[J]. Hazardous Materials, 2021, 402(1):123516. |
26 | ACHYUT Panda, SATYANARAYAN Patnaik, SACHIN Kumar. Pyrolysis kinetics of keyboard plastic waste using thermogravimetric analyser to assess its energy potential[J]. Environmental Engineering and Landscape Management, 2022, 30: 259⁃267. |
27 | 刘全义, 马凯庆, 朱倩, 等.民航客机货舱侧壁板材料的热解特性[J].塑料工业,2023,51(1):108⁃112,136. |
LIU Q Y, MA K Q, ZHU Q, et al. Pyrolysis characteristics of cargo side panel materials of airliner[J]. Plastics Industry, 2023,51(1): 108⁃112,136 | |
28 | 田霖, 胡建杭, 刘慧利. 基于热重⁃红外联用技术分析油酸的热解特性及动力学分析[J]. 化工进展, 2020, 39(S2):152⁃161. |
TIAN L, HU J H, LIU H L. Analysis of the pyrolysis characteristics and kinetics of oleic acid based on thermogravimetric infrared spectroscopy[J]. Progress in Chemical Industry, 2020, 39 (S2): 152⁃161. | |
29 | WANIGONO Fassinou, LAURENT Van de steene, Toure Siaka, et al. Pyrolysis of Pinus pinaster in a two⁃stage gasifier: Influence of processing parameters and thermal cracking of tar[J]. Fuel Processing Technology, 2009, 90(1):75⁃90. |
30 | Ma S J, Long H N, He L M, et al. Effects of pressure and residence time on limonene production in waste tires pyrolysis process[J]. Analytical and Applied Pyrolysis, 2020,151:104899. |
31 | LELE Aditya Dilip, JU Yiguang. Assessment of the impact of reactor residence time distribution on non⁃equilibrium product selectivity of polypropylene pyrolysis using reactive molecular dynamics simulations[J]. Fuel, 2023, 338:127328. |
32 | KULAS Daniel, ZOLGHADR Ali, SHONNARD David. Micropyrolysis of polyethylene and polypropylene prior to bioconversion: the effect of reactor temperature and vapor residence time on product distribution[J]. ACS Sustainable Chemistry & Engineering. 2021, 9:14 443⁃14 450. |
33 | Yue C Y, Gao P P, Tang L F, et al. Effects of N2/CO2 atmosphere on the pyrolysis characteristics for municipal solid waste pellets[J]. Fuel, 2022, 315:123233. |
34 | Yan M, Zhou X, Zhang S C, et al. Municipal solid waste pyrolysis under circulated pyrolytic gas atmosphere[J]. Material Cycles and Waste Management, 2021: 23. |
35 | GRZYWACZ Przemysław, CZERSKI Grzegorz, GANCZARCZYK Wojciech. Effect of pyrolysis atmosphere on the gasification of waste tire char[J]. Energies, 2021, 15: 35. |
36 | 李亚玲,张伟民. 乳酸/己内酯共聚物的差示扫描量热分析[J]. 北京印刷学院学报, 2006, 4(13):39⁃41. |
LI Y L, ZHANG W M. Differential scanning calorimetric analysis of lactic acid/caprolactone copolymer[J]. Beijing Institute of Graphic Arts, 2006, 4(13):39⁃41. | |
37 | 逄翠翠, 谢平平, 张文杰, 等. 浅谈差示扫描量热法应用[C]//中国润滑技术论坛(2018)暨中国汽车工程学会汽车燃料与润滑油分会第十八届年会论文专辑. 苏州: China Academic Journal Electronic Publishing House,2018:415⁃418. |
38 | Qin L B, Han J, Zhao B, et al. Thermal degradation of medical plastic waste by in⁃situ FTIR, TG⁃MS and TG⁃GC/MS coupled analyses[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136:132⁃145. |
39 | 贺金娴. 差热分析在塑料工业中的应用[J]. 江苏化工, 1983, (2):56⁃62. |
HE J X. Application of differential thermal analysis in plastics industry[J]. Jiangsu Chemical Industry, 1983, (2):56⁃62. | |
40 | 马洪亭, 王芳超, 杨国利, 等. 三种典型医疗废物热解过程的差热分析[J]. 化工进展,2012, 31(4):933⁃937. |
MA H T, WANG F C, YANG G L, et al. Differential thermal analysis of pyrolysis processes of three typical medical wastes[J]. Chemical Industry and Engineering Progress, 2012, 31(4):933⁃937. | |
41 | 杨丹. 差热分析法在聚酯监测中的应用[J]. 聚酯工业, 2019, 32(3):25⁃27. |
YANG D. Application of differential thermal analysis method in polyester monitoring[J]. Polyester Industry, 2019, 32(3):25⁃27. | |
42 | 李茜茜, 冯俊小. 有机固废热解动力学的研究进展[J]. 环境工程, 2022, 40(10):215⁃223. |
LI Q X, FENG J X. Research progress on pyrolysis kinetics of organic solid waste[J]. Environmental Engineering, 2022, 40(10):215⁃223. | |
43 | KREMER Irma, TOMIC Tihomir, KATANCIC Zvonimir, et al. Catalytic pyrolysis and kinetic study of real⁃world waste plastics: multi⁃layered and mixed resin types of plastics[J]. Clean Technologies and Environmental Policy, 2022, 24:10. |
44 | PRABHAKAR Ashok, SADHUKHAN Anup Kumar, GUPTA Parthapratim. Study of pyrolysis kinetics of coal fines using model free method[J]. Materials Today: Proceedings, 2022, 68(4):910⁃915. |
45 | Hu Y D, Liu J, Li X M, et al. Assessment of the pyrolysis kinetics and mechanism of vegetable⁃tanned leathers[J]. Analytical and Applied Pyrolysis, 2022, 164: 105502 |
46 | 骆强, 曲芳, 姚志鹏, 等.典型航空电缆的热解动力学研究[J].华南师范大学学报(自然科学版), 2021, 53(5):30⁃36. |
LUO Q, QU F, YAO Z P, et al.Pyrolysis kinetics study of typical aviation cables[J]. South China Normal University (Natural Science Edition), 2021, 53(5):30⁃36. | |
47 | 刘盈孜. 聚酰亚胺热解机理的研究[D]. 北京:北京化工大学,2021. |
48 | Ding Z Y, Chen H S, Liu J Y, et al. Pyrolysis dynamics of two medical plastic wastes: drivers, behaviors, evolved gases, reaction mechanisms, and pathways[J]. Hazardous Materials, 2020, 402: 123472. |
49 | MENARES Tamara, HERRERA Jorge, ROMERO Romina, et al. Arteaga⁃pérez,waste tires pyrolysis kinetics and reaction mechanisms explained by TGA and Py⁃GC/MS under kinetically⁃controlled regime[J]. Waste Management, 2020, 102: 21⁃29. |
50 | Chen J W, Ma X Q, Yu Z S, et al. A study on catalytic co⁃pyrolysis of kitchen waste with tire waste over ZSM-5 using TG⁃FTIR and Py⁃GC/MS[J]. Bioresource Technology, 2019, 289: 12585. |
51 | SINGH Gajendra, VERMA Anil, ALMAS Sadiya, et al. Pyrolysis kinetic study of waste milk packets using thermogravimetric analysis and product characterization[J]. Journal of Material Cycles and Waste Management, 2019: 21. |
52 | Yao Z T, Yu S Q, Su W P, et al. Kinetic studies on the pyrolysis of plastic waste using a combination of modelfitting and model⁃free methods[J]. Waste Management & Research, 2020, 38: 77⁃85. |
53 | Pallab DAS, TIWARI Pankaj. Thermal degradation kinetics of plastics and model selection[J]. Thermochim Acta, 2017, 654: 191⁃202. |
54 | ABOULKAS A, El Harfi K, El Bouadili A. Thermal degradation behaviors of polyethylene and polypropylene[J]. Thermochimica Acta, 2010, 51:1 363⁃1 369. |
55 | 张公妍, 张延松, 陈昆, 等.模式拟合法和无模式函数法对月桂酸热解行为及机理的研究[J]. 日用化学工业, 2021, 51(04): 265⁃271. |
ZHANG G Y, ZHANG Y S, CHEN K, et al. Study on behavior and mechanism of lauric acid pyrolysis by mode fitting and mode afree function method[J]. Daily Chemical Industry, 2021, 51(4): 265⁃271. | |
56 | Shan T L, Bian H G, Wang K S, et al.Study on pyrolysis characteristics and kinetics of mixed waste plastics under different atmospheres[J]. Thermochimica Acta, 2023, 722, 179467. |
57 | Chen Z W, Liu L H, Wang H, et al. Pyrolysis Characteristics and non⁃isothermal kinetics of integrated circuits[J]. Materials, 2022, 13(4 460): 10. |
58 | SAHA D, SINHA A, PATTANAYAK S . et al. Pyrolysis kinetics and thermodynamic parameters of plastic grocery bag based on thermogravimetric data using iso⁃conversional methods[J]. International Journal of Environmental Science and Technology, 2022, 19:391⁃406. |
59 | Chen X Y, Cai D, Yang Y M, et al. Pyrolysis kinetics of bio⁃based polyurethane: Evaluating the kinetic parameters, thermodynamic parameters, and complementary product gas analysis using TG/FTIR and TG/GC⁃MS[J]. Renewable Energy, 2023, 205:490⁃498. |
60 | Park Ki⁃Bum, Kim Joo⁃Sik. Pyrolysis products from various types of plastics using TG⁃FTIR at different reaction temperatures[J]. Journal of Analytical and Applied Pyrolysis, 2023, 171:105983, |
61 | Sun Y N, Zhang H N, Zhang F, et al. Pyrolysis properties and kinetics of photocured waste from photopolymerization⁃based 3D printing: A TG⁃FTIR/GC⁃MS study[J]. Waste Management, 2022, 150:151⁃160. |
62 | 田原宇, 吕永康, 谢克昌. PVC的热解/红外(Py/FTIR)研究[J]. 燃料化学学报, 2002, 6:569⁃572. |
TIAN Y Y, LV Y K, XIE K C. Pyrolysis and infrared (Py/FTIR) study of PVC[J]. Journal of fuel Chemistry, 2002, 6:569⁃572. | |
63 | 罗希韬, 王志奇, 武景丽, 等. 基于热重红外联用分析的PE、PS、PVC热解机理研究[J]. 燃料化学学报, 2012, 40(9): 1 147⁃1 152. |
LUO X T, WANG Z Q, WU J L, et al. Study on pyrolysis mechanism of PE, PS and PVC based on thermogravimetric infrared analysis[J]. Journal of Fuel Chemistry and Technology, 2012, 40(9): 1 147⁃1 152. | |
64 | 吕全伟, 林顺洪, 柏继松, 等. 热重⁃红外联用(TG⁃FTIR)分析含油污泥⁃废轮胎混合热解特性[J]. 化工进展, 2017, 36(12): 4 692⁃4 699. |
LV Q W, LIN S H, Bai J S, et al. Analysis of pyrolysis characteristics of oily sludge⁃waste tire mixture by TG⁃FTIR[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4 692⁃4 699. | |
65 | BATUER Adili, LONG Jisheng, DU Hailiang, et al. Multi⁃products oriented co⁃pyrolysis of papers, plastics, and textiles in MSW and the synergistic effects[J]. Journal of Analytical and Applied Pyrolysis, 2022, 163:105478. |
66 | 赫树开, 曾晓哲, 齐汝宾, 等. 基于FTIR的高压电器用T型电缆插头热解行为研究[J]. 绝缘材料, 2021, 54(4):91⁃94. |
HE S K, ZENG X Z, QI R B, et al. Study on pyrolysis behavior of T⁃type cable plug for high⁃voltage electrical apparatus based on FTIR[J]. Insulating Materials, 2021, 54(4):91⁃94. | |
67 | REINERTE Sanita, AVOTINA Liga, ZARINS Arturs, et al. TG/DTA⁃FTIR as a method for analysis of tall oil based rigid polyurethane foam decomposition gaseous products in a low oxygen environment[J]. Polymer Degradation and Stability, 2020, 180: 109313. |
68 | SEBASTIAN Alarcon Salinas, PETER Kusch, GERD Knupp, et al. Characterization and quantification of poly(acrylonitrile⁃co⁃1,3⁃butadiene⁃co⁃styrene)/polyamide 6 (ABS/PA6) blends using pyrolysis⁃gas chromatography (Py⁃GC) with different detector systems[J]. Journal of Analytical & Applied Pyrolysis, 2016, 122(11):452⁃457. |
69 | 于惠梅, 张青红, 齐玲均, 等.热分析⁃质谱联用中逸出气体的脉冲热分析定量方法[J]. 中国科学:化学, 2010, 40(9): 1 402⁃1 408. |
YU H M, ZHANG Q H, QI L J, et al. Quantitative method for impulsive thermal analysis of escaped gas in thermal analysis⁃mass spectrometry[J]. Science China Chemistry, 2010, 40(9): 1 402⁃1 408. | |
70 | 李卫青, 贾德民, 傅伟文, 等. 采用热重和裂解气相色谱⁃质谱分析方法剖析轮胎硫化胶[J]. 弹性体, 2002,1:52⁃57. |
LI W Q, JIA D M, FU W W, et al. Analysis of tire vulcanized rubber by thermogravimetric and pyrolysis gas chromatography⁃mass spectrometry[J]. Elastomers, 2002, 1:52⁃57. | |
71 | 郭振戈. 基于py⁃gc/ms及原位红外纤维素热解机理研究[D].广州: 华南理工大学, 2016. |
72 | 潘永红, 王万卷, 余巧玲, 等. 基于热重分析和热裂解气相色谱⁃质谱联用法的液晶聚合物热裂解成分检测[J]. 塑料科技, 2016, 44(1): 90⁃93. |
PAN Y H, WANG W J, YU Q L, et al. Determination of pyrolysis components of liquid crystal polymers based on thermogravimetric analysis and pyrolysis gas chromatography⁃mass spectrometry[J]. Plastic Science and Tec⁃hnology, 2016, 44(1): 90⁃93. | |
73 | Li B Y, Wang X L, Xia Z D, et al. Co⁃pyrolysis of waste polyester enameled wires and polyvinyl chloride: Evolved products and pyrolysis mechanism analysis[J]. Journal of Analytical and Applied Pyrolysis, 2022, 169: 105816. |
74 | MENARES Tapia Tamara, HERRERA Jorge, ROMERO Romina, et al. Waste tires pyrolysis kinetics and reaction mechanisms explained by TGA and Py⁃GC/MS under kinetically⁃controlled regime[J]. Waste management, 2019, 102:21⁃29. |
75 | Xu F F, Wang B, Yang D, et al. TG⁃FTIR and Py⁃GC/MS study on pyrolysis mechanism and products distribution of waste bicycle tire[J]. Energy Conversion and Management, 2018, 175:288⁃297. |
76 | Supriyanto, Ylitervo Päivi, Richards Tobias. Gaseous products from primary reactions of fast plastic pyrolysis[J].Journal of Analytical and Applied Pyrolysis, 2021, 158:105248. |
77 | Straka Pavel, Bičáková Olga, Šupová Monika. Slow pyrolysis of waste polyethylene terephthalate yielding paraldehyde, ethylene glycol, benzoic acid and clean fuel[J]. Polymer Degradation and Stability, 2022, 198:109900. |
78 | Zhou J J, Liu G J, Wang S B, et al.TG⁃FTIR and Py⁃GC/MS study of the pyrolysis mechanism and composition of volatiles from flash pyrolysis of PVC[J]. Journal of the Energy Institute, 2020, 93:2 362⁃2 370. |
79 | Peng Y J, Wang Y P, Ke L Y. A review on catalytic pyrolysis of plastic wastes to high⁃value products[J]. Energy Conversion and Management, 2022, 254:115243. |
80 | Zhang Y T, Fu Z G, Wang W, et al. Kinetics, product evolution, and mechanism for the pyrolysis of typical plastic waste[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(1): 91⁃103. |
81 | Xie W, Su J, Zhang X K, et al. Investigating kinetic behavior and reaction mechanism on autothermal pyrolysis of polyethylene plastic[J]. Energy, 2023, 269:126817. |
82 | Oenema Jogchum, Liu Haoran, Nathalie De Coensel, et al. Review on the pyrolysis products and thermal decomposition mechanisms of polyurethanes[J].Journal of Analytical and Applied Pyrolysis, 2023, 168:105723. |
83 | Chen G Y, Liu T C, Luan P P,et al. Distribution, migration, and removal of N⁃containing products during polyurethane pyrolysis: A review[J]. Journal of Hazardous Materials, 2023, 453:131406. |
84 | Yang J, Wu Y F, Zhu J L, et al. Insight into the pyrolysis behavior of polyvinyl chloride using in situ pyrolysis time⁃of⁃flight mass spectrometry: Aromatization mechanism and Cl evolution[J]. Fuel, 2023, 331:125994. |
85 | 孙锴. 废塑料催化热解制备芳香烃的研究[D]. 杭州:浙江大学, 2021. |
86 | Cunliffe A M, Williams P T. Composition of oils derived from the batch pyrolysis of tyres[J]. Journal of Analytical and Applied Pyrolysis, 1998, 44(2):131⁃152. |
87 | Banar M, Akyıldız V, Özkan A, et al. Characterization of pyrolytic oil obtained from pyrolysis of TDF (Tire Derived Fuel)[J]. Energy Conversion and Management, 2012, 62: 22⁃30. |
88 | 刘晓静, 吴玉锋, 李彬, 等. 废线路板典型利用处置技术污染防控研究进展[J]. 有色金属(冶炼部分), 2021,(10):71⁃80. |
LIU X J, WU Y F, LI B, et al. Research progress on pollution prevention and control of typical utilization and disposal technology of waste circuit boards[J]. Nonferrous Metals(Smelting Part), 2021, (10):71⁃80. |
[1] | MA Xiuqing, LAO Zhichao, LI Mingqian, HAN Shuntao, HU Nan. Effect of screw configuration on performance of PLA/PTW blends [J]. China Plastics, 2023, 37(11): 127-134. |
[2] | LYU Chong, ZHU Wenwen, SHI Zhengxue, JIA Yingzi, JIANG Xueliang, YOU Feng, HUANG Ligang, YAO Chu, LIU Fangjun. Research progress in preparation and acoustic properties of polymer composites with high noise reduction [J]. China Plastics, 2023, 37(11): 170-177. |
[3] | MA Juncheng, XU Shuangping, WANG Xintian, JIA Hongge, ZHANG Mingyu, QU Yanqing. Research progress in biomass⁃based materials for iodine adsorption [J]. China Plastics, 2023, 37(11): 178-191. |
[4] | ZHAO Hejin, WAN Xian, LU Jiahui, ZHANG Hongyu, GUO Baohua. Development and applications of phase⁃change energy⁃storage material in architecture [J]. China Plastics, 2023, 37(11): 46-61. |
[5] | LI Tianhua, BAI Lin, SUN Ying. Determination of carbon black content in polyolefin pipes and fittings by using four methods [J]. China Plastics, 2023, 37(11): 95-100. |
[6] | LI Hongwei, ZHANG Yongfeng, QI Wujun, RUAN Gangyong, RUAN Libo, FANG Yuchao. Problems of polyethylene pipes and reinforced polyethylene composite pipes in practical engineering application [J]. China Plastics, 2023, 37(8): 69-78. |
[7] | YANG Tianxue, YANG Zhe, ZHANG Junping, WANG Ming, GONG Tiancheng, ZHANG Ting, HOU Jiaqi, XI Beidou. Comparative analysis of research hotspots and trends of domestic and foreign biodegradable films [J]. China Plastics, 2023, 37(1): 119-132. |
[8] | YANG Xu, FANG Jian, QIN Min, YU Lei. Preparation process optimization and characterization of chitosan/gellan gum bilayer films [J]. China Plastics, 2022, 36(11): 14-23. |
[9] | YANG Bo, YANG Zhen, ZENG Chen, WANG Zhigang, ZHAI Wei, CAO Fuxiang. Lifetime prediction of polyethylene pipe based on cyclic load [J]. China Plastics, 2022, 36(9): 63-69. |
[10] | LI Yan, TANG Xiaoxu, ZHANG Weijie, HUANG Ruipeng, ZHANG Shan. Research progress in evaluation of slow crack growth resistance of polyethylene pipes based on strain hardening modulus [J]. China Plastics, 2022, 36(9): 148-159. |
[11] | LIN Jianhui, LU Jiahui, WU Xinying, FAN Xueying, DENG Guirong, GAO Liang, MEI Chengfang, YANG Yonggang. Study of uncertainty evaluation in determination of ultimate aerobic biodegradability of degradable materials under controlled composting conditions [J]. China Plastics, 2022, 36(9): 140-147. |
[12] | HE Anqi, HUANG Jian, ZHANG Ying, SUN Huali, XIANG Aimin, XU Haiyun. Pressure design of chlorinated poly(vinyl chloride) pipelines in sprinkler systems and comparative analysis of domestic and foreign standards [J]. China Plastics, 2022, 36(9): 131-139. |
[13] | ZHANG Bing. Study on test of oxidation induction time for random copolymer polypropylene pipe [J]. China Plastics, 2022, 36(8): 107-109. |
[14] | LIU Yi, WANG Ye, SUN Wei, QU Guoxing, XU Xia, YANG Shaolin, YUAN Ning. Determination of content of transparent nucleating agent in polypropylene using infrared spectroscopy [J]. China Plastics, 2022, 36(8): 115-118. |
[15] | ZHANG Xin, QUAN Shumiao. Study on current status of recycling and reutilization of waste agricultural films based on China’s policy [J]. China Plastics, 2022, 36(7): 136-142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||