京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2023, Vol. 37 ›› Issue (11): 178-191.DOI: 10.19491/j.issn.1001-9278.2023.11.020
• Review • Previous Articles
MA Juncheng1,2(), XU Shuangping1,2(
), WANG Xintian1,2, JIA Hongge1,2, ZHANG Mingyu1,2, QU Yanqing1,2
Received:
2023-07-12
Online:
2023-11-26
Published:
2023-11-22
CLC Number:
MA Juncheng, XU Shuangping, WANG Xintian, JIA Hongge, ZHANG Mingyu, QU Yanqing. Research progress in biomass⁃based materials for iodine adsorption[J]. China Plastics, 2023, 37(11): 178-191.
吸附材料 | 碘吸附量/ mg·g-1 | 热解峰值温度/ ℃ | 停留时间/ h | 参考 文献 |
---|---|---|---|---|
巴旦木壳 | 330 | 500 | 2 | [ |
梧桐木 | 341 | 500 | 4 | [ |
小麦秸秆 | 456 | 300 | 8 | [ |
杏树鲜叶 | 575 | 300 | 24 | [ |
褐煤与石莼 | 1 701 | 800 | 1 | [ |
茶叶 | 649 | 455 | 1 | [ |
艾草 | 750 | 400 | 2 | [ |
吸附材料 | 碘吸附量/ mg·g-1 | 热解峰值温度/ ℃ | 停留时间/ h | 参考 文献 |
---|---|---|---|---|
巴旦木壳 | 330 | 500 | 2 | [ |
梧桐木 | 341 | 500 | 4 | [ |
小麦秸秆 | 456 | 300 | 8 | [ |
杏树鲜叶 | 575 | 300 | 24 | [ |
褐煤与石莼 | 1 701 | 800 | 1 | [ |
茶叶 | 649 | 455 | 1 | [ |
艾草 | 750 | 400 | 2 | [ |
吸附材料 | 活化剂 | 生物质与活化剂质量比 | 活化温度/℃ | 活化时间/min | 碘吸附/mg·g-1 | 参考文献 |
---|---|---|---|---|---|---|
辣椒秸秆 | KOH | 1/2 | 800 | 150 | 1 042 | [ |
茶叶 | ZnCl2 | 1/2 | 450 | 60 | 1 078 | [ |
椰子 | H3PO4 | 1/1 | 714 | 75 | 462 | [ |
棕榈仁壳 | H3PO4 | 1/1 | 715 | 75 | 423 | [ |
板栗壳 | ZnCl2 | 1/1 | 600 | 45 | 1 525 | [ |
核桃壳 | KOH | 1/1 | 800 | 120 | 740 | [ |
核桃壳 | H3PO4 | 1/3 | 1 000 | 120 | 834 | [ |
松子壳 | KOH | 1/2 | 800 | 120 | 1 482 | [ |
吸附材料 | 活化剂 | 生物质与活化剂质量比 | 活化温度/℃ | 活化时间/min | 碘吸附/mg·g-1 | 参考文献 |
---|---|---|---|---|---|---|
辣椒秸秆 | KOH | 1/2 | 800 | 150 | 1 042 | [ |
茶叶 | ZnCl2 | 1/2 | 450 | 60 | 1 078 | [ |
椰子 | H3PO4 | 1/1 | 714 | 75 | 462 | [ |
棕榈仁壳 | H3PO4 | 1/1 | 715 | 75 | 423 | [ |
板栗壳 | ZnCl2 | 1/1 | 600 | 45 | 1 525 | [ |
核桃壳 | KOH | 1/1 | 800 | 120 | 740 | [ |
核桃壳 | H3PO4 | 1/3 | 1 000 | 120 | 834 | [ |
松子壳 | KOH | 1/2 | 800 | 120 | 1 482 | [ |
吸附材料 | 活化剂 | 比表面积/ m2·g-1 | 平均孔径/ nm | 产率/ % | 参考 文献 |
---|---|---|---|---|---|
AC⁃K | KOH | 1 689 | 2.22 | 11.2 | [ |
AC⁃P | H3PO4 | 369 | 2.46 | 21.5 | [ |
PC⁃ZnCl2 | ZnCl2 | 1 655 | 3.28 | 34.6 | [ |
PC⁃H3PO4 | H3PO4 | 1 262 | 2.89 | 36.0 | [ |
K⁃RPC | KOH | 2 016 | 2.15 | 1.4 | [ |
AC70 | H3PO4 | 1 063 | 4.48 | 36.8 | [ |
GAC | ZnCl2 | 1 109 | 2.10 | 35.8 | [ |
吸附材料 | 活化剂 | 比表面积/ m2·g-1 | 平均孔径/ nm | 产率/ % | 参考 文献 |
---|---|---|---|---|---|
AC⁃K | KOH | 1 689 | 2.22 | 11.2 | [ |
AC⁃P | H3PO4 | 369 | 2.46 | 21.5 | [ |
PC⁃ZnCl2 | ZnCl2 | 1 655 | 3.28 | 34.6 | [ |
PC⁃H3PO4 | H3PO4 | 1 262 | 2.89 | 36.0 | [ |
K⁃RPC | KOH | 2 016 | 2.15 | 1.4 | [ |
AC70 | H3PO4 | 1 063 | 4.48 | 36.8 | [ |
GAC | ZnCl2 | 1 109 | 2.10 | 35.8 | [ |
1 | Staples M D, MALINA R, BARRETT S. The limits of bioenergy for mitigating global life⁃cycle greenhouse gas emissions from fossilfuels[J]. Nature Energy, 2017, 2(2): 16202. |
2 | LIU Z, YANG B, TIAN L, et al. Development and outlook of advanced nuclear energy technology[J]. Energy Strategy Reviews, 34:100630. |
3 | AGBENYEGA J. Nuclear energy, the power of the future?[J]. Materials Today, 2010, 13(12):1. |
4 | NAIMOĞLU M. The impact of nuclear energy use, energy prices and energy imports on CO2 emissions: Evidence from energy importer emerging economies which use nuclear energy[J]. Journal of Cleaner Production, 2022, 373: 133937. |
5 | HILL D J. Nuclear energy for the future[J]. Nature Materials, 2008, 7(9): 680⁃682. |
6 | NAKAGAWA Nanami, KOSAI Shoki, YAMASUE Eiji. Life cycle resource use of nuclear power generation considering total material requirement[J]. Journal of Cleaner Production,2022,363: 132530. |
7 | RASHAD S M, HAMMAD F H. Nuclear power and the environment: comparative assessment of environmental and health impacts of electricity⁃generating systems[J]. Applied Energy, 2000, 65: 211⁃229. |
8 | XIE Y, CHEN C, REN X, et al. Emerging natural and tailored materials for uranium⁃contaminated water treatment and environmental remediation[J]. Progress in Materials Science, 2019, 103: 180⁃234. |
9 | KARLEY D, SHUKLA S K, RAO T S. Microbiological assessment of spent nuclear fuel pools: An in⁃perspective review[J]. Journal of Environmental Chemical Engineering, 2022, 10: 108050. |
10 | SHIMAMOTO Y S, TAKAHASHI Y, TERADA Y. Formation of organic iodine supplied as iodide in a soil⁃water system in Chiba, Japan[J]. Environmental Science & Technology, 2011, 45(6): 2 086⁃2 092. |
11 | SUBRAHMANYAM K S, SARMA D, MALLIAKAS C D, et al. Chalcogenide aerogels as sorbents for radioactive iodine[J]. Chemistry of Materials, 2015, 27(7): 2 619⁃2 626. |
12 | KÜPPER F C, FEITERS M C, OLOFSSON B, et al. Commemorating two centuries of iodine research: An interdisciplinary overview of current research[J]. Angewandte Chemie International Edition, 2011, 50(49): 11 598⁃11 620. |
13 | SAIZ⁃LOPEZ A, PLANE J M C, BAKER A R, et al. Atmospheric chemistry of iodine[J]. Chemical Reviews, 2012, 112(3): 1 773⁃1 804. |
14 | BECKER D V, BRAVERMAN L E, DUNN J T, et al. The use of iodine as a thyroidal blocking agent in the event of a reactor accident: Report of the environmental hazards committee of the american thyroid association[J]. JAMA, 1984, 252: 659⁃661. |
15 | WHITEHEAD D C. The distribution and transformations of iodine in the environment[J]. Environment International, 1984, 10: 321⁃339. |
16 | MIENSAH E D, KOKULOKU L T, GU A, et al. In situ modification of JUC-160⁃derived carbon with Cu/ZnO nanoparticles for efficient capture and reversible storage of radioiodine[J]. Surfaces and Interfaces, 2022, 32: 102160. |
17 | SCHNOOR J L. Lessons from Fukushima[J]. Environmental Science & Technology, 2011, 45(9): 3 820. |
18 | XU S, FREEMAN S P H T, HOU X, et al. Iodine isotopes in precipitation: temporal responses to (129)I emissions from the fukushima nuclear accident[J]. Environmental Science & Technology, 2013, 47(19): 10 851⁃10 859. |
19 | 马英,刘群,董磊,等. 气态放射性碘的捕集方法综述[J]. 山西大学学报(自然科学版), 2017, 40(3): 515⁃520. |
MA Y, LIU Q, DONG L,et al. Reviews on methods for air⁃bone radioiodine capture[J]. Journal of Shanxi University(Natural Science Edition), 2017, 40(3): 515⁃520. | |
20 | JOFFREY H, ANDREY R, HABIBA N, et al. Porous sorbents for the capture of radioactive iodine compounds: a review[J]. RSC Advances, 2018, 8(51): 29 248⁃29 273. |
21 | XIONG S, JIAN T, WANG Y, et al. Uniform poly(phosphazene⁃triazine) porous microspheres for highly efficient iodine removal[J]. Chemical Communications, 2018, 54(61): 8 450⁃8 453. |
22 | ZHOU J, HAO S, GAO L, et al. Study on adsorption performance of coal based activated carbon to radioactive iodine and stable iodine[J]. Annals of Nuclear Energy, 2014, 72: 237⁃241. |
23 | SUN H, YANG B, AN L. Biomass derived porous carbon for efficient capture of carbon dioxide, organic contaminants and volatile iodine with exceptionally high uptake[J]. Chemical Engineering Journal, 2019, 372: 65⁃73. |
24 | ASPROMONTE S G, MIZRAHI MARTÍN D, SCHNEEBERGER F A, et al. Study of the nature and location of silver in ag⁃exchanged mordenite catalysts. characterization by spectroscopic techniques[J]. The Journal of Physical Chemistry C, 2013, 117(48): 25 433⁃25 442. |
25 | BRUFFEY S H, JUBIN R T, JORDAN J A. Capture of elemental and organic iodine from dilute gas streams by silver⁃exchanged mordenite[J]. Procedia Chemistry, 2016, 21: 293⁃299. |
26 | CHIBANI S, CHEBBI M, LEBÈGUE S, et al. A DFT investigation of the adsorption of iodine compounds and water in H⁃, Na⁃, Ag⁃, and Cu⁃ mordenite[J]. Journal of Chemical Physics, 2016, 144(24): 2 345⁃2 171. |
27 | CHIBANI S, CHEBBI M, LÉBEGUE S, et al. Impact of the Si/Al ratio on the selective capture of iodine compounds in silver⁃mordenite: a periodic DFT study[J]. Physical Chemistry Chemical Physics, 2016, 18(36): 25 574⁃25 581. |
28 | ZHANG X, JOHN M, NENOFF T M, et al. Adsorption of iodine in metal⁃organic framework materials[J]. Chemical Society reviews, 2022, 51(8): 3 243⁃3 262. |
29 | ASSAAD T, ASSFOUR B. Metal organic framework MIL-101 for radioiodine capture and storage[J]. Journal of Nuclear Materials, 2017, 493: 6⁃11. |
30 | LI B, DONG X, WANG H, et al. Capture of organic iodides from nuclear waste by metal⁃organic framework⁃based molecular traps[J]. Nature Communications, 2017, 8: 485. |
31 | CHEBBI M, AZAMBRE B, VOLKRINGER C, et al. Dynamic sorption properties of metal⁃organic frameworks for the capture of methyl iodide[J]. Microporous & Mesoporous Materials, 2017, 259: 244⁃254. |
32 | SAVA D F, CHAPMAN K W, RODRIGUEZ M A, et al. Competitive I2 sorption by Cu⁃BTC from humid gas streams[J]. Chemistry of Materials, 2013, 25:2 591⁃2 596. |
33 | WANG S, LIU Y, YE Y, et al. Ultrahigh volatile iodine capture by conjugated microporous polymer based on N, N, N′, N′⁃tetraphenyl-1,4⁃phenylenediamine[J]. Polymer Chemistry, 2019, 10(20): 2 608⁃2 615. |
34 | WANG S, HU Q, LIU Y, et al. Multifunctional conjugated microporous polymers with pyridine unit for efficient iodine sequestration, exceptional tetracycline sensing and removal[J]. Journal of Hazardous Materials, 2019, 387: 121949. |
35 | QIAN X, ZHU Z, SUN H, et al. Capture and reversible storage of volatile iodine by novel conjugated microporous polymers containing thiophene units[J]. ACS Applied Materials & Interfaces, 2016, 8(32): 21 063⁃21 069. |
36 | LI J, ZHANG H, ZHANG L, et al. Two⁃dimensional covalent⁃organic frameworks for ultrahigh iodine capture[J]. Journal of Materials Chemistry A, 2020, 8: 9 523⁃9 527. |
37 | SONG S, SHI Y, LIU N, et al. Theoretical screening and experimental synthesis of ultrahigh⁃iodine capture covalent organic frameworks[J]. ACS Applied Materials and Interfaces, 2021, 13(8): 10 513⁃10 523. |
38 | WANG P, XU Q, LI Z, et al. Exceptional iodine capture in 2D covalent organic frameworks[J]. Advanced Materials, 2018, 30: 1801991. |
39 | MOKHTARI N, DINARI M. Developing novel amine⁃linked covalent organic frameworks towards reversible iodine capture[J]. Separation and Purification Technology, 2022, 301: 121948. |
40 | LIN G, ZHU L, DUAN T, et al. Efficient capture of iodine by a polysulfide⁃inserted inorganic NiTi⁃layered double hydroxides[J]. Chemical Engineering Journal, 2019, 378: 122181. |
41 | ZHU B, CHEN Y, NA W. Engineering biocatalytic and biosorptive materials for environmental applications[J]. Trends in Biotechnology, 2018, 37(6): 661⁃676. |
42 | PHANTHUWONGPAKDEE J, BABEL S, LAOHHASURAYOTIN K, et al. Anthocyanin based agricultural wastes as bio⁃adsorbents for scavenging radioactive iodide from aqueous environment[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104147. |
43 | SAHIN O, SAKA C, CEYHAN A A, et al. The pyrolysis process of biomass by two⁃stage chemical activation with different methodology and iodine adsorption[J]. Energy sources, Part A: Recovery, Utilization, and Environmental Effects, 2016, 38(12): 1 756⁃1 762. |
44 | MANNA S, BOBDE P, ROY D, et al. Separation of iodine using neem oil⁃cashew nut shell liquid based⁃phenol formaldehyde resin modified lignocellulosic biomatrices: Batch and column study[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 122: 98⁃105. |
45 | 崔健, 李雨平, 缪恒锋, 等. 响应面法优化磷酸改性秸秆生物炭的制备[J]. 环境污染与防治, 2020, 42(5): 534⁃538. |
CUI J, LI Y P, MIAO H F,et al. Optimization of preparation conditions of phosphoric acid modified straw biochar by response surface methodology[J]. Environmental Pollution & Control, 2020, 42(5): 534⁃538. | |
46 | ZHANG K, CHEN T. Dried powder of corn stalk as a potential biosorbent for the removal of iodate from aqueous solution[J]. Journal of Environmental Radioactivity, 2018, 190⁃191: 73⁃80. |
47 | ZHANG K, CHEN T. Sorption and removal of iodate from aqueous solution using dried duckweed (Landoltia Punctata) powder[J]. Journal of Radioanalytical & Nuclear Chemistry, 2018, 316(2): 543⁃551. |
48 | LEE C L, CHIN K L, H’NG P S, et al. Effect of pretreatment conditions on the chemical⁃structural characteristics of coconut and palm kernel shell: A potentially valuable precursor for eco⁃efficient activated carbon production[J]. Environmental Technology & Innovation, 2021, 21: 101309. |
49 | 李佩仪. 高含碳量铋基生物炭吸附亚甲基蓝的性能与机理研究[D]. 南宁: 广西大学, 2022. |
50 | 尹晓雯, 杨惠敏, 吐尔逊·吐尔洪,等. 巴旦木壳基生物炭的制备及其吸附性能表征[J]. 材料科学与工程学报, 2021, 39(2): 322⁃329. |
YIN X W, YANG H M, TERXUN TUERHONG, et al. Preparation and characterization of adsorptive property of almond shell based biochar[J]. Journal of Materials Science and Engineering, 2021, 39(2): 322⁃329. | |
51 | SUN J, HE F, PAN Y, et al. Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types[J]. Acta Agriculturae Scandinavica Section B, Soil and Plant Science, 2017, 67(1): 12⁃22. |
52 | 刘靖, 何选明, 冯东征, 等. 褐煤与石莼共热解制备活性炭及其吸附性能[J]. 煤炭转化, 2019, 42(2): 18⁃24. |
LIU J, HE X M, FENG D Z, et al. Adsorption properties of activated carbon prepared from co⁃pyrolysis of lignite and ulva[J]. Coal Conversion, 2019, 42(2): 18⁃24. | |
53 | 张莉, 赵际沣, 蒋莉. 响应面法优化废茶叶活性炭的干法制备工艺[J]. 江苏理工学院学报, 2018, 24(6): 38⁃46. |
ZHANG L, ZHAO J F, JIANG L. A novel method for production of activated carbon from waste tea and processing optimization[J]. Journal of Jiangsu University of Technology, 2018, 24(6): 38⁃46. | |
54 | WIŚNIEWSKA M, REJER K, PIETRZAK R, et al. Biochars and activated biocarbons prepared via conventional pyrolysis and chemical or physical activation of mugwort herb as potential adsorbents and renewable fuels[J]. Molecules, 2022, 27(23): 8597. |
55 | YAKOUT S M. Physicochemical characteristics of biochar produced from rice straw at different pyrolysis temperature for soil amendment and removal of organics[J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2017, 87: 207⁃214. |
56 | WANG M, YAO S, XU X, et al. The effect of carbonization temperature on the morphology and adsorption of pine⁃shoot biomorphic porous carbon[J]. Journal of Porous Materials, 2016, 23(5): 1 169⁃1 179. |
57 | XU Z, ZHANG Q, LIN P, et al. Oxygen⁃rich microporous carbons with exceptionally high adsorption of iodine[J]. Materials Chemistry and Physics, 2022(285): 126193. |
58 | SHIN J, LEE Y G, LEE S H, et al. Single and competitive adsorptions of micropollutants using pristine and alkali⁃modified biochars from spent coffee grounds[J]. Journal of Hazardous Materials, 2020, 400: 123102. |
59 | BASHIR S, ZHU J, FU Q, et al. Comparing the adsorption mechanism of Cd by rice straw pristine and KOH⁃modified biochar[J]. Environmental Science & Pollution Research, 2018, 25(12): 11 875⁃11 883. |
60 | REDA A T, ZHANG D, XU X, et al. Highly stable iodine capture by pillared montmorillonite functionalized Bi2O3@g⁃C3N4 nanosheets[J]. Separation and Purification Technology, 2022, 292: 120994. |
61 | SIRURU H, SYAFII W, WISTARAIN J, et al. Properties of sago waste charcoal using hydrothermal and pyrolysis carbonization[J]. Biomass Conversion and Biorefinery, 2020, 12(12): 5 543⁃5 554. |
62 | BUDIMAN I, HERMAWAN D, FEBRIANTO F, et al. Char properties and pollutant adsorption capability of oil palm shell using hydrothermal process[J]. Biomass Conversion and Biorefinery, 2019, 9(4): 681⁃688. |
63 | 刘超, 李世林, 高宏权, 等. 水蒸气二氧化碳共活化制备聚苯胺基活性碳在离子液体超级电容器中的应用 [J]. 中国材料进展, 2021, 40(4): 308⁃313. |
LIU C, LI S L, GAO H Q, et al. Preparation and application of H2O(gas)⁃CO2 co⁃activated polyaniline⁃based carbon materials for lonic liquid supercapacitor[J]. Materials China, 2021, 40(4): 308⁃313. | |
64 | 钟轩昊, 潘昊鑫, 刘凯歌, 等. 水热炭的制备及其在储能器件中的应用[J]. 化工新型材料, 2022, 50(1): 439⁃443. |
ZHONG X H, PAN H X, LIU K G, et al. Preparation of hydrochar and its application in energy storage devices[J]. New Chemical Materials, 2022, 50(1): 439⁃443. | |
65 | 李欢欢, 李海红, 吴丹萍. KOH活化法优化制备辣椒秸秆基活性炭及其性能表征[J]. 化学研究与应用, 2022, 34(9): 2 149⁃2 156. |
LI H H, LI H H, WU D P. Optimization of preparation of pepper straw based activated carbon by KOH activation method and its performance characterization[J]. Chemical Research and Application, 2022, 34(9): 2 149⁃2 156. | |
66 | 柳学鋈, 郑少楷, 易碧霞, 等. 茶叶活性炭的制备及其性能测试 [J]. 广东化工, 2022, 49(3): 79⁃82. |
LIU X W, ZHENG S K, YI B X, et al. Preparation and performance test of tea activated carbon[J]. Guangdong Chemical Industry, 2022, 49(3): 79⁃82. | |
67 | WU Y, GUO Y, SU R, et al. Hierarchical porous carbon with an ultrahigh surface area for high⁃efficient iodine capture: Insights into adsorption mechanisms through experiments, simulations and modeling[J]. Separation and Purification Technology, 2022, 303: 122237. |
68 | LEE C L, H’NG P S, CHIN K L, et al. Characterization of bioadsorbent produced using incorporated treatment of chemical and carbonization procedures[J]. Royal Society Open Science, 2019, 6(9): 190667. |
69 | SAKA C, YARDIM Y, ŞAHIN Ö, et al. Iodine adsorption and electrochemical⁃layer capacitor characteristics of activated carbon prepared from low⁃cost biomass[J]. International Journal of Phytoremediation, 2022: 25(1): 74⁃81. |
70 | LI X, QIU J, HU Y, et al. Characterization and comparison of walnut shells⁃based activated carbons and their adsorptive properties[J]. Adsorption Science & Technology, 2020, 38(9/10): 450⁃463. |
71 | MA C, BAI J, DEMIR M, et al. Polyacrylonitrile⁃derived nitrogen enriched porous carbon fiber with high CO2 capture performance[J]. Separation and Purification Technology, 2022, 303: 122299. |
72 | WANG M, CAI H, QIAO Q, et al. Characterization techniques application on pesticide adsorption mechanism research of corn straw biochar based on KOH thermal activation[J]. Mobile Information Systems, 2022, 2022: 3389112. |
73 | ULLAH F, JI G, IRFAN M, et al. Adsorption performance and mechanism of cationic and anionic dyes by KOH activated biochar derived from medical waste pyrolysis[J]. Environmental Pollution, 2022, 314: 120271. |
74 | MA Z, HAN Y, QI J, et al. High iodine adsorption by lignin⁃based hierarchically porous flower⁃like carbon nanosheets[J]. Industrial Crops and Products, 2021, 169: 113649. |
75 | LI B, HU J, XIONG H, et al. Application and properties of microporous carbons activated by ZnCl2 : adsorption behavior and activation mechanism[J]. ACS Omega, 2020, 5(16): 9 398⁃9 407. |
76 | 韩汝莲, 单永芳, 郑朝胚, 等. 松子壳基活性炭的制备及其性能研究[J]. 云南化工, 2020, 47(4): 53⁃57. |
HAN R L, SHAN Y F, ZHENG C P, et al. Study on preparation and properties of pine nut shell⁃based activated carbon[J]. Yunnan Chemical Technology, 2020, 47(4): 53⁃57. | |
77 | 郭露遥. 氯化锌⁃硝酸改性核桃壳微波炭对结晶紫的吸附研究[D]. 昆明: 昆明理工大学, 2021. |
78 | 刘思敏. 葡萄糖基和花粉基球形杂化孔碳材料的制备及其性能研究[D]. 广州:华南农业大学, 2018. |
79 | ZHENG B, LIU X, HU J, et al. Construction of hydrophobic interface on natural biomaterials for higher efficient and reversible radioactive iodine adsorption in water[J]. Journal of Hazardous Materials, 2019, 368: 81⁃89. |
80 | CHIMI T, HANNAH B U, LINCOLD N M, et al. Preparation, characterization and application of H3PO4⁃activated carbon fromPentaclethra macrophyllapods for the removal of Cr(VI) in aqueous medium[J]. Journal of the Iranian Chemical Society, 2022, 20(2): 399⁃413. |
81 | ZHAO L, ZHENG W, MAŠEK O, et al. Roles of Phosphoric acid in biochar formation: synchronously improving carbon retention and sorption capacity[J]. Journal of Environmental Quality, 2017, 46(2): 393⁃401. |
82 | CAMIRE A, ESPINASSE J, CHABOT B, et al. Development of electrospun lignin nanofibers for the adsorption of pharmaceutical contaminants in wastewater[J]. Environmental Science and Pollution Research, 2020, 27: 3 560⁃3 573. |
83 | MENG X, SCHEIDEMANTLE B, LI M, et al. Synthesis, characterization, and utilization of a lignin⁃based adsorbent for effective removal of azo dye from aqueous solution[J]. ACS Omega, 2020, 5(6): 2 865⁃2 877. |
84 | Yin L, Zhao Z, Han M, et al. Facile strategy for carbon foam fabrication with lignin as sole feedstock and its applications[J]. Frontiers of Chemical Science and Engineering, 2023,17: 1 051⁃1 064. |
85 | Song S, Shi Y, Liu N, et al. C [double bond, length as m⁃dash] N linked covalent organic framework for the efficient adsorption of iodine in vapor and solution[J]. RSC advances, 2021, 11(18): 10 512⁃10 523. |
86 | Che H, Wei G, Fan Z, et al. Super facile one⁃step synthesis of sugarcane bagasse derived N⁃doped porous biochar for adsorption of ciprofloxacin[J]. Journal of Environmental Management, 2023, 335: 117566. |
87 | Xiao K, Liu H, Li Y,et al.Excellent performance of porous carbon from urea⁃assisted hydrochar of orange peel for toluene and iodine adsorption[J].Chemical Engineering Journal, 2019, 382:122997. |
88 | Yuan M, Liu T, Shi Q,et al.Understanding the KOH activation mechanism of zeolitic imidazolate framework⁃derived porous carbon and their corresponding furfural/acetic acid adsorption separation performance[J].Chemical Engineering Journal, 2022, 428:132016. |
89 | MA P, YAO S, WANG Z, et al. Preparation of nitrogen⁃doped hierarchical porous carbon aerogels from agricultural wastes for efficient pollution adsorption [J]. Separation and Purification Technology, 2023, 311: 123250 |
90 | Li B, Hu J, Xiong H,et al.Application and properties of microporous carbons activated by ZnCl2: adsorption behavior and activation mechanism[J].ACS Omega, 2020, 5(16):9 398⁃9 407. |
91 | Xia Z X Z.Conversion of cotton textile wastes into porous carbons by chemical activation with ZnCl2, H3PO4, and FeCl3 [J].Environmental Science and Pollution Research, 2020, 27(20): 25 186⁃25 196. |
92 | Liu Y L, Liu S, Liang Y,et al.Large⁃scale synthesis of porous carbon via one⁃step CuCl2 activation of rape pollen for high⁃performance supercapacitors[J].Journal of Materials Chemistry A, 2018, 6(25): 12 046⁃12 055. |
93 | Ismail I S, Rashidi N A, Yusup S.Production and characterization of bamboo⁃based activated carbon through single⁃step H3PO4 activation for CO2 capture[J].Environmental Science and Pollution Research, 2021:1⁃7. |
94 | Benmahdi F, Oulmi K, Khettaf S,et al.Synthesis and characterization of microporous granular activated carbon from silver berry seeds using ZnCl2 activation[J].Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29(9): 657⁃669. |
95 | LUO M, CHEN J, LI Q, et al. Cotton⁃based activated carbon fiber with high specific surface area prepared by low⁃temperature hydrothermal carbonization with urea enhancement[J]. Industrial & Engineering Chemistry Research, 2023, 62(22): 8 744⁃8 753. |
96 | ZOU K, DENG Y, CHEN J, et al. Hierarchically porous nitrogen⁃doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high⁃performance supercapacitors[J]. Journal of Power Sources, 2018, 378: 579⁃588. |
97 | PHAM T C T, DOCAO S, HWANG I C, et al. Capture of iodine and organic iodides using silica zeolites and the semiconductor behaviour of iodine in a silica zeolite[J]. Energy & Environmental Science, 2016, 9(3): 1 050⁃1 062. |
98 | LI J, WANG M, ZHAO X, et al. Efficient iodine removal by porous biochar⁃confined nano⁃Cu2O/Cu0: rapid and selective adsorption of iodide and iodate ions[J]. Nanomaterials (Basel), 2023, 13(3):576. |
[1] | WANG Yuwei, XIAO Runxiang, ZHANG Hongkai, GUAN Wenjin, DENG Yafeng. Research progress in nanofiber⁃based air filtration materials [J]. China Plastics, 2023, 37(9): 115-124. |
[2] | . Preparation and applications of ultrahigh molecular weight polyethylene films [J]. , 2023, 37(5): 1-8. |
[3] | . Research progress in preparation of polymer/graphene composites through emulsion polymerization [J]. , 2023, 37(4): 112-120. |
[4] | . Research progress in processing technology of biodegradable grade BOPLA films [J]. , 2023, 37(4): 121-135. |
[5] | FENG Kai, LI Yongqing, MA Xiuqing, HAN Ying. Research progress and application in toughening modification of polyoxymethylene [J]. China Plastics, 2022, 36(7): 157-164. |
[6] | SUN Qi, GAO Xing, CUI Xuemei, LIAN Huiqin, CUI Xiuguo, WANG Xiaodong. Research progress in development and applications of black phosphorene for flame retardancy of polymers [J]. China Plastics, 2022, 36(5): 133-139. |
[7] | CHEN Wenjing, YANG Xiaolong, HAN Shuntao, HAN Ying, MA Xiuqing. Research progress in modification methods of polyacrylonitrile materials [J]. China Plastics, 2022, 36(4): 158-165. |
[8] | YANG Qinjie, LI Jiawen, LI Ming, CHEN Gang, LI Guangzhao, Peng Biyou, HAN Rui. Research progress in fused deposition modeling 3D printing equipment [J]. China Plastics, 2022, 36(2): 157-171. |
[9] | ZHAO Wenwen, XU Shuangping, JIA Hongge, WANG Xing, XU Jingyu. Research progress in gas⁃separation membrane materials of hyperbranched polymer [J]. China Plastics, 2022, 36(11): 84-93. |
[10] | TANG Wei, QIAN Lijun, QIU Yong, CHEN Yajun, XU Bo, ZHAO Zhen. Research Progress in Halogen⁃free Flame Retardant Technology for Polypropylene [J]. China Plastics, 2021, 35(1): 136-149. |
[11] | ZHANG Xin, ZHOU Wen, QIN Wenbo, LIU Jinglong, GUO Bin, HUANG Yanan. Research Progress in Applications of Forestry Chemicals in Plastics and Composites [J]. China Plastics, 2020, 34(11): 102-108. |
[12] | YE Bading, LU Chenfeng, CHU Nengkui, SHEN Haibo, LI Binbin, XIE Pengcheng. Research Progress in All⁃Electric Injection Molding Machine and Its Application in Auto Parts Electronic Industry [J]. China Plastics, 2020, 34(10): 94-99. |
[13] | . Research Progress in Polymer Matrix Composites with Highly Thermally Conductive Network [J]. China Plastics, 2019, 33(8): 127-135. |
[14] | . Research Progress in Intrinsic Self-repairing Polyurethane Materials [J]. China Plastics, 2019, 33(5): 121-129. |
[15] | YE Xuan, TU Huajin. Research Progress in ABS Materials for 3D Printing [J]. China Plastics, 2019, 33(12): 101-108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||