京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2024, Vol. 38 ›› Issue (10): 134-141.DOI: 10.19491/j.issn.1001-9278.2024.10.023
• Review • Previous Articles
WANG Xuejing, XIN Fei(), LAI Qiaojie
Received:
2024-01-08
Online:
2024-10-26
Published:
2024-10-21
CLC Number:
WANG Xuejing, XIN Fei, LAI Qiaojie. Progress in applications of carbon nitride nano organic materials[J]. China Plastics, 2024, 38(10): 134-141.
1 | She P F, Qin Y Y, Wang X, et al. Recent progress in external⁃stimulus⁃responsive 2D covalent organic frameworks [J]. Advanced Materials, 2022, 34(22): 579⁃632. |
2 | Zhuang Y L, Ren X L, Che X T, et al. Organic photoresponsive materials for information storage: a review [J]. Advanced Photonics, 2021, 3(1): 311⁃319. |
3 | YAO J, FU X, CHEN H, et al. Fabrication of oxygen doped g‐C3N4 through the formation of a supramolecular precursor for the enhanced photocatalytic degradation of sulfonamides [J]. Journal of Chemical Technology & Biotechnology, 2022, 98(2): 431⁃441. |
4 | SHIRANI M, KALANTARI H, KHODAYAR M J, et al. A novel strategy for detection of small molecules based on aptamer/gold nanoparticles/graphitic carbon nitride nanosheets as fluorescent biosensor [J]. Talanta, 2020, 219(21):151⁃163. |
5 | LIU X, ZHANG H, CAI Z, et al. Fluorescent graphitic carbon nitride with photocatalytic oxidase⁃like activity for anti⁃counterfeiting application [J]. Spectrochimica Acta Part a⁃Molecular and Biomolecular Spectroscopy, 2022, 268(9):467⁃473. |
6 | LIU W, XU S, GUAN S, et al. Confined synthesis of carbon nitride in a layered host matrix with unprecedented solid⁃state quantum yield and stability[J]. Advanced Materials, 2018, 30(2):553⁃559. |
7 | LIU J, FU W, LIAO Y, et al. Recent advances in crystalline carbon nitride for photocatalysis [J]. Journal of Materials Science & Technology, 2021, 91: 224⁃240. |
8 | POURMADADI M, RAJABZADEH⁃KHOSROSHAHI M, TABAR F S, et al. Two⁃dimensional graphitic carbon nitride (g⁃C3N4) nanosheets and their derivatives for diagnosis and detection applications [J]. Journal of Functional Biomaterials, 2022, 13(4):112⁃118. |
9 | WANG H, LU Q, LI M, et al. Electrochemically prepared oxygen and sulfur co⁃doped graphitic carbon nitride quantum dots for fluorescence determination of copper and silver ions and biothiols [J]. Analytica Chimica Acta, 2018, 1027: 121⁃129. |
10 | JIA J, WHITE E R, CLANCY A J, et al. Fast exfoliation and functionalisation of two‐dimensional crystalline carbon nitride by framework charging [J]. Angewandte Chemie International Edition, 2018, 57(39): 12 656⁃12 660. |
11 | WANG Y, SHEN S. Progress and prospects of non⁃metal doped graphitic carbon nitride for improved photocatalytic performances [J]. Acta Physico⁃Chimica Sinica, 2020, 36(3):782⁃791. |
12 | GUPTA N, TODI K, NARAYAN T, et al. Graphitic carbon nitride⁃based nanoplatforms for biosensors: design strategies and applications [J]. Materials Today Chemistry, 2022, 24(15):367⁃372. |
13 | QI H, SUN B, DONG J, et al. Facile synthesis of two⁃dimensional tailored graphitic carbon nitride with enhanced photoelectrochemical properties through a three⁃step polycondensation method for photocatalysis and photoelectrochemical immunosensor [J]. Sensors and Actuators B⁃Chemical, 2019, 285: 42⁃48. |
14 | SONG Z, FANG Z, CHEN J, et al. Highly fluorescent carbon nitride oligomer with aggregation⁃induced emission characteristic for plastic staining [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 276(51):511⁃520. |
15 | PASUPULETI K S, D⁃J NAM, N⁃H BAK, et al. Highly sensitive g⁃C3N4 nanosheets as a potential candidate for the effective detection of NO2 gas via langasite⁃based surface acoustic wave gas sensor [J]. Journal of Materials Chemistry C, 2022, 10(1): 160⁃170. |
16 | CAI Z, CHEN J, XING S, et al. Highly fluorescent g⁃C3N4 nanobelts derived from bulk g⁃C3N4 for NO2 gas sensing [J]. Journal of Hazardous Materials, 2021, 416(9):824⁃832. |
17 | ZHANG Z, GAO Y, LI P, et al. Highly sensitive fluorescence detection of chloride ion in aqueous solution with Ag⁃modified porous g⁃C3N4 nanosheets [J]. Chinese Chemical Letters, 2020, 31(10): 2 725⁃2 729. |
18 | LV Y, JIANG C, HU K, et al. In⁃situ growth of cobalt oxyhydroxide on graphitic⁃phase C3N4 nanosheets for fluorescence turn⁃on detection and imaging of ascorbic acid in living cells [J]. Microchimica Acta, 2019, 186(6):372⁃379. |
19 | LIU Q, ZHAI Z, SUN J, et al. Synthesis of graphitic carbon nitride and polypyrrole nanocomposite (PPy/g⁃C3N4) as efficient photocatalysts for dibenzothiophene degradation in oilfield produced wastewater [J]. International Journal of Electrochemical Science, 2022, 17(12):732⁃741. |
20 | ZHAO G, HAO S, GUO J, et al. Design of p⁃n homojunctions in metal⁃free carbon nitride photocatalyst for overall water splitting [J]. Chinese Journal of Catalysis, 2021, 42(3): 501⁃509. |
21 | ZENG C, HU Y. Hydrothermal synthesis of a CoIn2S4/g⁃C3N4 heterojunctional photocatalyst with enhanced photocatalytic H2 evolution activity under visible light illumination [J]. Nanotechnology, 2020, 31(50):553⁃562. |
22 | XU C, HE H, XU Z, et al. Modification of graphitic carbon nitride by elemental boron cocatalyst with high⁃efficient charge transfer and photothermal conversion [J]. Chemical Engineering Journal, 2021, 417(81):111⁃119. |
23 | LIU M, WAGEH S, AL⁃GHAMDI A A, et al. Quenching induced hierarchical 3D porous g⁃C3N4 with enhanced photocatalytic CO2 reduction activity [J]. Chemical Communications, 2019, 55(93): 14 023⁃14 026. |
24 | CHEN Z, SAVATEEV A, PRONKIN S, et al. “The easier the better” preparation of efficient photocatalysts⁃metastable poly(heptazine imide) Salts [J]. Advanced Materials, 2017, 29(32):336⁃345. |
25 | AGGARWAL M, BASU S, SHETTI N P, et al. Photocatalytic carbon dioxide reduction: Exploring the role of ultrathin 2D graphitic carbon nitride (g⁃C3N4) [J]. Chemical Engineering Journal, 2021, 425(12):89⁃97. |
26 | XIA P, ANTONIETTI M, ZHU B, et al. Designing defective crystalline carbon nitride to enable selective CO2 photoreduction in the gas phase [J]. Advanced Functional Materials, 2019, 29(15):132⁃139. |
27 | MAZZANTI S, SAVATEEV A. Emerging concepts in carbon nitride organic photocatalysis [J]. ChemPlusChem, 2020, 85(11): 2 499⁃2 517. |
28 | GUO R⁃T, WANG J, BI Z⁃X, et al. Recent advances and perspectives of g⁃C3N4⁃based materials for photocatalytic dyes degradation [J]. Chemosphere, 2022, 295(56):330⁃337. |
29 | ZHU J N, ZHU X Q, CHENG F F, et al. Preparing copper doped carbon nitride from melamine templated crystalline copper chloride for fenton⁃like catalysis [J]. Applied Catalysis B: Environmental, 2019, 256(164):132⁃140. |
30 | THE HUY B, THANGADURAI D T, SHARIPOV M, et al. Recent advances in turn off⁃on fluorescence sensing strategies for sensitive biochemical analysis⁃a mechanistic approach [J]. Microchemical Journal, 2022, 179(15):669⁃676. |
31 | CHEN L, SONG J. Tailored graphitic carbon nitride nanostructures: synthesis, modification, and sensing applications [J]. Advanced Functional Materials, 2017, 27(39):553⁃559. |
32 | WANG L, ZHU F, LIAO S, et al. Single⁃stranded DNA modified protonated graphitic carbon nitride nanosheets: a versatile ratiometric fluorescence platform for multiplex detection of various targets [J]. Talanta, 2019, 197: 422⁃430. |
33 | LIU F, DU F, YUAN F, et al. Electrochemiluminescence bioassays based on carbon nitride nanomaterials and 2D transition metal carbides [J]. Current Opinion in Electrochemistry, 2022, 34. |
34 | LIU M, ZHANG B, ZHANG M, et al. A dual⁃recognition molecularly imprinted electrochemiluminescence sensor based on g⁃C3N4 nanosheets sensitized by electrodeposited rGO⁃COOH for sensitive and selective detection of tyramine [J]. Sensors and Actuators B⁃Chemical, 2020, 311(15):56⁃65. |
35 | XIE H, BEI F, HOU J, et al. A highly sensitive dual⁃signaling assay via inner filter effect between g⁃C3N4 and gold nanoparticles for organophosphorus pesticides [J]. Sensors and Actuators B⁃Chemical, 2018, 255: 2 232⁃2 239. |
36 | ZHU X, XU H, LI W, et al. A novel hybrid platform of g⁃C3N4 nanosheets/nucleic⁃acid⁃stabilized silver nanoclusters for sensing protein [J]. Analytica Chimica Acta, 2019, 1091: 112⁃118. |
37 | GHORUI U K, SATRA J, MONDAL P, et al. Graphitic carbon nitride embedded⁃Ag nanoparticle decorated⁃ZnWO4 nanocomposite⁃based photoluminescence sensing of Hg2+ [J]. Materials Advances, 2021, 2(12): 4 041⁃4 057. |
38 | QU B, SUN J, LI P, et al. Current advances on g⁃C3N4⁃based fluorescence detection for environmental contaminants [J]. Journal of Hazardous Materials, 2022, 425(32):167⁃175. |
39 | TI M, LI Y, LI Z, et al. A ratiometric nanoprobe based on carboxylated graphitic carbon nitride nanosheets and Eu3+ for the detection of tetracyclines [J]. The Analyst, 2021, 146(3): 1 065⁃1 073. |
40 | GOVIND A, BHARATHI P, MATHANKUMAR G, et al. Enhanced charge transfer in 2D carbon⁃ rich g⁃C3N4 nanosheets for highly sensitive NO2 gas sensor applications [J]. Diamond and Related Materials, 2022, 128(8):119⁃128. |
41 | PATIR K, GOGOI S K. Room temperature phosphorescence of chlorine doped carbon nitride dots [J]. Frontiers in Chemistry, 2022, 10(8):32⁃40. |
42 | FU M, FENG Z, WANG J, et al. Creatine⁃based carbon dots with room⁃temperature phosphorescence employed for the dual⁃channel detection of warfarin [J]. Applied Surface Science, 2022, 571(110):766⁃775. |
43 | LIU X F, ZOU L, YANG C, et al. Fluorescence lifetime⁃tunable water⁃resistant perovskite quantum dots for multidimensional encryption [J]. Acs Applied Materials & Interfaces, 2020, 12(38): 43 073⁃43 082. |
44 | MA Q, WANG J, LI Z, et al. Recent progress in time‐resolved biosensing and bioimaging based on lanthanide‐doped nanoparticles [J]. Small, 2019, 15(32):466⁃473. |
45 | SONG Z, LIN T, LIN L, et al. Invisible Security Ink Based on Water⁃Soluble Graphitic Carbon Nitride Quantum Dots [J]. Angewandte Chemie⁃International Edition, 2016, 55(8): 2 773⁃2 777. |
46 | BAO X, LIU E, YUAN X, et al. Rational preparation of anti⁃water phosphorescent carbon⁃dots and flake C3N4 composites through microwave⁃heating method for multiple data encryption [J]. Journal of Luminescence, 2022, 248(76):550⁃559. |
47 | WU Y, REN Y, GUO J, et al. Imidazolium⁃type ionic liquid⁃based carbon quantum dot doped gels for information encryption [J]. Nanoscale, 2020, 12(40): 20 965⁃20 972. |
48 | LI W, ZHOU W, ZHOU Z, et al. A universal strategy for activating the multicolor room‐temperature afterglow of carbon dots in a boric acid matrix [J]. Angewandte Chemie, 2019, 131(22): 7 356⁃7 361. |
49 | YANG L, LIU S, QUAN T, et al. Sulfuric⁃acid⁃mediated synthesis strategy for multi⁃colour aggregation⁃induced emission fluorescent carbon dots: application in anti⁃counterfeiting, information encryption, and rapid cytoplasmic imaging [J]. Journal of Colloid and Interface Science, 2022, 612: 650⁃663. |
[1] | DONG Guang, HOU Yangzhe, YUAN Hongyue, LIU Xianhu, PAN Yamin. Progress in porous poly(lactic acid) material and their structure and performance optimization [J]. China Plastics, 2024, 38(8): 132-140. |
[2] | LIU Shunquan, ZHANG Xinyue, FENG Zhanmiao, FU Chenchao, XUE Ping, ZHANG Run. Research progress in modification techniques and performance optimization of PTFE [J]. China Plastics, 2024, 38(7): 112-119. |
[3] | REN Xiaolong, LI Yi, SU Danyi. Patented technology research and industrialization progress in highly transparent polyimide films [J]. China Plastics, 2024, 38(7): 120-137. |
[4] | JI Jianchao, YAN Yue, CHEN Yuhong, HA Enhua, HAO Changshan, LEI Pei. Optical properties and microstructures of TiO2 thin film deposited on PMMA at low temperature [J]. China Plastics, 2024, 38(3): 7-12. |
[5] | KONG Zimeng, ZHANG Jian, DENG Yaxin, XU Xueling, CHEN Yajun. Research progress in flame⁃retardant poly(butanediol succinate) [J]. China Plastics, 2024, 38(2): 105-117. |
[6] | JIA Meng, XU Zhun, WEI Simiao, ZHANG Qinglei, XU Bo. Research progress in flame⁃retardant foam materials for construction [J]. China Plastics, 2024, 38(2): 52-60. |
[7] | WANG Yuwei, XIAO Runxiang, ZHANG Hongkai, GUAN Wenjin, DENG Yafeng. Research progress in nanofiber⁃based air filtration materials [J]. China Plastics, 2023, 37(9): 115-124. |
[8] | . Preparation and applications of ultrahigh molecular weight polyethylene films [J]. , 2023, 37(5): 1-8. |
[9] | . Research progress in preparation of polymer/graphene composites through emulsion polymerization [J]. , 2023, 37(4): 112-120. |
[10] | . Research progress in processing technology of biodegradable grade BOPLA films [J]. , 2023, 37(4): 121-135. |
[11] | MA Juncheng, XU Shuangping, WANG Xintian, JIA Hongge, ZHANG Mingyu, QU Yanqing. Research progress in biomass⁃based materials for iodine adsorption [J]. China Plastics, 2023, 37(11): 178-191. |
[12] | ZHANG Chao, XU Shuangping, JIA Hongge, ZHANG Mingyu, QU Yanqing, XU Jingyu. Progress in preparation of graphene⁃like carbon nitride and its application in gas separation [J]. China Plastics, 2023, 37(11): 62-73. |
[13] | FENG Kai, LI Yongqing, MA Xiuqing, HAN Ying. Research progress and application in toughening modification of polyoxymethylene [J]. China Plastics, 2022, 36(7): 157-164. |
[14] | SUN Qi, GAO Xing, CUI Xuemei, LIAN Huiqin, CUI Xiuguo, WANG Xiaodong. Research progress in development and applications of black phosphorene for flame retardancy of polymers [J]. China Plastics, 2022, 36(5): 133-139. |
[15] | CHEN Wenjing, YANG Xiaolong, HAN Shuntao, HAN Ying, MA Xiuqing. Research progress in modification methods of polyacrylonitrile materials [J]. China Plastics, 2022, 36(4): 158-165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||