京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2024, Vol. 38 ›› Issue (3): 38-43.DOI: 10.19491/j.issn.1001-9278.2024.03.007
• Materials and Properties • Previous Articles Next Articles
XU Jinjia1,2(), HUANG Teng1,2, BAI Zhicheng1,2, SHEN Jiahao1,2, XIE Qingyi1, ZHU Junhui1, DAI Jinfeng1,2(
), LIU Yuanqiang3, ZHAN Xianxu3
Received:
2023-08-21
Online:
2024-03-26
Published:
2024-03-28
CLC Number:
XU Jinjia, HUANG Teng, BAI Zhicheng, SHEN Jiahao, XIE Qingyi, ZHU Junhui, DAI Jinfeng, LIU Yuanqiang, ZHAN Xianxu. Flame retardancy and smoke suppression of rigid polyurethane foam coated with chitosan⁃sulfonated graphene through layer⁃by⁃layer self⁃assembly[J]. China Plastics, 2024, 38(3): 38-43.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2024.03.007
样品 | T1/s | T2/s | UL 94级别 | LOI/% |
---|---|---|---|---|
RUPF | - | - | 无 | 19.7±0.5 |
RUPF⁃1BL | - | - | V⁃2 | 26.5±0.5 |
RUPF⁃3BL | 7.1±1.2 | 12.4±0.8 | V⁃1 | 32.6±0.5 |
RUPF⁃5BL | 3.8±0.4 | 5.4±0.4 | V⁃0 | 35.1±0.5 |
样品 | T1/s | T2/s | UL 94级别 | LOI/% |
---|---|---|---|---|
RUPF | - | - | 无 | 19.7±0.5 |
RUPF⁃1BL | - | - | V⁃2 | 26.5±0.5 |
RUPF⁃3BL | 7.1±1.2 | 12.4±0.8 | V⁃1 | 32.6±0.5 |
RUPF⁃5BL | 3.8±0.4 | 5.4±0.4 | V⁃0 | 35.1±0.5 |
样品 | Td5%/℃ | Rpeak/Tpeak(%·min-1·℃-1) | 800 ℃残炭量/% |
---|---|---|---|
RPUF | 293 | 13.2/352 | 18.8 |
RPUF⁃1BL | 293 | 13.2/359 | 24.8 |
RPUF⁃3BL | 283 | 11.2/406 | 31.6 |
RPUF⁃5BL | 275 | 10.7/399 | 34.9 |
样品 | Td5%/℃ | Rpeak/Tpeak(%·min-1·℃-1) | 800 ℃残炭量/% |
---|---|---|---|
RPUF | 293 | 13.2/352 | 18.8 |
RPUF⁃1BL | 293 | 13.2/359 | 24.8 |
RPUF⁃3BL | 283 | 11.2/406 | 31.6 |
RPUF⁃5BL | 275 | 10.7/399 | 34.9 |
样品 | RPUF | RPUF⁃1BL | RPUF⁃3BL | RPUF⁃5BL |
---|---|---|---|---|
TTI/s | 3±0.7 | 5±0.5 | 11±0.5 | 17±0.5 |
pHRR/kW·m-2 | 236.1±5.2 | 180.4±3.2 | 164.1±2.5 | 163.9±2.3 |
THR/MJ·m-2 | 45.8±1.2 | 42.1±1.1 | 40.0±1.1 | 39.0±0.8 |
残炭量/% | 15.8±0.5 | 20.2±0.3 | 23.2±0.3 | 24.2±0.3 |
TSP/m2 | 10.6±0.1 | 9.7±0.1 | 9.3±0.1 | 9.1±0.1 |
样品 | RPUF | RPUF⁃1BL | RPUF⁃3BL | RPUF⁃5BL |
---|---|---|---|---|
TTI/s | 3±0.7 | 5±0.5 | 11±0.5 | 17±0.5 |
pHRR/kW·m-2 | 236.1±5.2 | 180.4±3.2 | 164.1±2.5 | 163.9±2.3 |
THR/MJ·m-2 | 45.8±1.2 | 42.1±1.1 | 40.0±1.1 | 39.0±0.8 |
残炭量/% | 15.8±0.5 | 20.2±0.3 | 23.2±0.3 | 24.2±0.3 |
TSP/m2 | 10.6±0.1 | 9.7±0.1 | 9.3±0.1 | 9.1±0.1 |
1 | Amranu A, Zakarias S, Chia C H, et al. Polyols and rigid polyurethane foams derived from liquefied lignocellulosic and cellulosic biomass [J]. Cellulose, 2019, 26(5): 3 231⁃3 246. |
2 | Gómez⁃rojo R, Alameda L, Rodríguea Á, et al. Characterization of Polyurethane Foam Waste for Reuse in Eco⁃Efficient Building Materials [J]. Polymers, 2019,11(2): 359. |
3 | Li Y C, Mannen S, Morgan A B, et al. Intumescent All⁃Polymer Multilayer Nanocoating Capable of Extinguishing Flame on Fabric [J]. Advanced Materials, 2011, 23: 3 926⁃3 931. |
4 | Laufer G, Kirkland C, Morgan A B, et al. Intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame⁃retardant cotton[J]. Biomacromolecules, 2012, 13(9): 2 843⁃2 848. |
5 | 邱晓庆. 聚氨酯泡沫表面氮化硼、还原氧化石墨烯防火涂层的构筑与性能研究[D]. 开封:河南大学, 2018. |
6 | 郑炳云, 陈彰旭, 傅明连,等. SiO2/C60/环氧树脂阻燃涂层的制备及性能表征[J/OL]. 涂料工业,2023,53(08):14⁃19. |
ZHENG B Y, CHEN Z X, FU M L, et al. Preparation and performance characterization for flame retardant coating of nano⁃SiO2/C60/Epoxy Resin[J/OL]. Paint & Coatings Industry, 2023,53(08):14⁃19. | |
7 | Qi J, Ping L, Bin W, et al. Inorganic⁃organic hybrid coatings from tea polyphenols anlaponite to improve the fire safety of flexible polyurethane foams[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655: 130336. |
8 | Dan M, Kai H W, Wen J W, et al. A biomimetic structured bio⁃based flame retardant coating on flexible polyurethane foam with low smoke release and antibacterial ability[J]. Chemosphere, 2023, 312: 137060. |
9 | Zhang T, Yan H, Peng M, et al. Construction of flame retardant nanocoating on ramie fabricvia layer⁃by⁃layer assembly of carbon nanotube and ammonium polyphosphate[J]. Nanoscale, 2013, 5(7): 3 013⁃3 021. |
10 | Chen X X, Fang F, Du T X, et al. Preparation and properties of chitosan⁃potassium alginate flame retardant coating via layer⁃by⁃layer selfassembly technology[J]. Polymeric Materials Science and Engineering, 2013, 32(07): 121⁃124. |
11 | 张仲达, 杨文芳. 层层自组装技术的研究进展及应用情况[J]. 材料导报, 2017, 31(05): 40⁃45. |
ZHANG Z D, YANG W F. Research progress and application of layer⁃by⁃layer self ⁃assembly technology[J]. Materials Reports, 2017, 31(05): 40⁃45. | |
12 | Carosio F, Di B A, Alongi J, et al. Green DNA⁃based flame retardant coatings assembled through layer by layer[J]. Polymer, 2013, 54(19): 5 148⁃5 153. |
13 | Lei W X, Ren K F, Chen X C, et al. Dynamic spongy microporous films to load lysozyme for antibacterial coating[J]. Acta Polymerica Sinica, 2017(5): 744⁃751. |
14 | Kim Y S, Harris R, Davis R. Innovative approach to rapid growth of highly clay⁃filled coatings on porous polyurethane foam[J]. ACS Macro Letters, 2012, 1(7): 820⁃824. |
15 | Wang L, Su S, Chen D, et al. Variation ofanions in layered double hydroxides: Effects on dispersion and fire properties[J]. Polymer Degradation and Stability, 2009, 94(5): 770⁃781. |
16 | Pan H, Yu B, Wang W, et al. Comparative study of layer by layer assembled multilayer films based on graphene oxide and reduced graphene oxide on flexible polyurethane foam: flame retardant and smoke suppression properties[J]. RSC Advances, 2016, 6(115): 114 304⁃114 312. |
17 | Wang B, Zhou K, Wang B, et al. Synthesis and characterization of CuMoO4/Zn–Al layered double hydroxide hybrids and their application as a reinforcement in polypropylene[J]. Industrial & engineering chemistry research, 2014, 53(31): 12 355⁃12 362. |
18 | Chen P, Zhao Y, Wang W, et al. Correlation of montmorillonite sheet thickness and flame retardant behavior of a chitosan (⁃) montmorillonite nanosheet membrane assembled on flexible polyurethane foam[J]. Polymers (Basel), 2019, 11(2): 213. |
19 | Maddalena L, Carosio F, Gomez J, et al. Layer⁃by⁃layer assembly of efficient flame retardant coatings based on high aspect ratio graphene oxide and chitosan capable of preventing ignition of PU foam[J]. Polymer Degradation and Stability, 2018, 152: 1⁃9. |
20 | 孟 竹, 黄安平, 张文学,等. 氧化石墨烯的制备及应用研究进展[J]. 合成材料老化与应用, 2017, 46(06): 95⁃99+111. |
MENG Z, HUANG A P, ZHANG W X, et al. Research progress in preparation and application of graphene oxide[J]. Synthetic Materials Aging and Application, 2017, 46(06): 95⁃99+111. | |
21 | Singh H, Ignition Jain A., combustion, toxicity, and fire retardancy of polyurethane foams : a comprehensive review[J]. Journal of Applied Polymer Science, 2009, 111(2): 1 115⁃1 143. |
22 | Pielichowski K, Slotwinska D, Dziwinski E. Segmented MDI/HMDI⁃based polyurethanes with lowered flammability[J]. Journal of Applied Polymer Science, 2004, 91(5): 3 214⁃3 224. |
23 | Green J. Mechanisms for flame retardancy and smoke suppression⁃a review[J]. Journal of Fire Sciences, 1996, 14(6): 426⁃442. |
24 | Li M E, Wang S X, L X. Han,et al. Hierarchically porous SiO2/polyurethane foam composites towards excellent thermal insulating,flame⁃retardant and smoke⁃suppressant performances[J], Journal of Hazardous Materials, 2019, 375: 61⁃69. |
25 | Yen Y Y, Wang H T, Guo W J. Synergistic flame retardant effect of metal hydroxide and nanoclay in EVA composites[J]. Polymer Degradation and Stability, 2012, 97: 863⁃869. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||