京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2021, Vol. 35 ›› Issue (8): 9-20.DOI: 10.19491/j.issn.1001-9278.2021.08.003
• Forum • Previous Articles Next Articles
ZANG Xiaoling(), WEN Bianying(
)
Received:
2021-04-19
Online:
2021-08-26
Published:
2021-08-27
CLC Number:
ZANG Xiaoling, WEN Bianying. Green Manufacturing and Sustainable Development for Polymer Materials[J]. China Plastics, 2021, 35(8): 9-20.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2021.08.003
1 | 乔金樑. 我国高分子材料产业转型发展的思考[J]. 石油化工, 2015, 44(9): 1 033⁃1 037. |
QIAO J L. Further Development of Polymer Industry in China[J]. Petrochemical Technology, 2015, 44(9): 1 033⁃1 037. | |
2 | ANASTAS P T, WARNER J C. Principles of Green Ghemistry[J].Green Chemistry: Theory and Practice, 1998: 29⁃56. |
3 | KOBAYASHI S. Enzymatic Polymerization⁃Polymer Synthesis Catalyzed by a Natural Macromolecule[J]. Journal of Polymer Science Part A: polymer Chemistry, 1999, 48: 124⁃127. |
4 | KOBAYASHI S. Enzymatic polymerization: A New Method of Polymer Synthesis[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1999, 37 (16): 3 041⁃3 056. |
5 | SHODA S I, UYAMA H, KADOKAWA J I, et al. Enzymes as Green Catalysts for Precision Macromolecular Synthesis[J]. Chemical Reviews, 2016, 116(4): 2 307⁃2 413. |
6 | SHODA S, KOBAYASHI A, KOBAYASHI S. Production of Polymers by White Biotechnology[J]. White Biotechnology for Sustainable Chemistry, 2015: 274⁃309. |
7 | KOBAYASHI S. Enzymatic Ring‐Opening Polymerization and Polycondensation for the Green Synthesis of Polyesters[J]. Polymers for Advanced Technologies, 2015, 26(7): 677⁃686. |
8 | ZHANG X, FEVRE M, JONES G O, et al. Catalysis as an Enabling Science for Sustainable Polymers[J]. Chemical Reviews, 2018, 118(2): 839⁃885. |
9 | HALONEN N J, PÁLVÖLGYI P S, BASSANI A, et al. Bio⁃based Smart Materials for Food Packaging and Sensors—A Review[J]. Frontiers in Materials, 2020, 7: 82. |
10 | DELIDOVICH I, HAUSOUL P J, DENG L, et al. Alternative Monomers Based on Lignocellulose and Their Use for Polymer Production[J]. Chemical Reviews, 2016, 116(3): 1 540⁃1 599. |
11 | 陈学思. 绿色塑料聚乳酸的关键技术研发与产业化应用[J]. 科技促进发展, 2015(3): 355⁃359. |
CHEN X S. Key Technology R & D and Industrial Applications of Biodegradable Plastics Polylactic Acid[J]. Science&Technology for Development, 2015(3): 355⁃359. | |
12 | ZHU Y, ROMAIN C, WILLIAMS C K. Sustainable Polymers from Renewable Resources[J]. Nature, 2016, 540(7633): 354⁃362. |
13 | 全球首套甘蔗制乙醇⁃乙烯⁃聚乙烯工业化装置投产[J]. 石油炼制与化工, 2011, 42(1): 92. |
14 | GÜRLER N, PAŞA S, ALMA M H, et al. The Fabrication of Bilayer Polylactic Acid Films from Cross⁃Linked Starch as Eco⁃Friendly Biodegradable Materials: Synthesis, Characterization, Mechanical and Physical Properties[J]. European Polymer Journal, 2020, 127: 109588. |
15 | BANERJEE A, DICK G R, YOSHINO T, et al. Carbon Dioxide Utilization via Carbonate⁃Promoted C⁃H Carboxylation[J]. Nature, 2016, 531(7593): 215⁃219. |
16 | PLATNIEKS O, GAIDUKOVS S, BARKANE A, et al. Bio⁃based Poly (butylene succinate)/Microcrystalline Cellulose/Nanofibrillated Cellulose⁃Based Sustainable Polymer Composites: Thermo⁃Mechanical and Biodegradation Studies[J]. Polymers, 2020, 12(7): 1472. |
17 | MOHAMMADINEJAD R, KUMAR A, RANJBAR⁃MOHAMMADI M, et al. Recent Advances in Natural Gum⁃Based Biomaterials for Tissue Engineering and Regenerative Medicine: A Review[J]. Polymers, 2020, 12(1): 176. |
18 | CHAKRABORTY I, CHATTERJEE K. Polymers and Composites Derived from Castor Oil as Sustainable Materials and Degradable Biomaterials: Current Status and Emerging Trends[J]. Biomacromolecules, 2020, 21(12): 4 639⁃4 662. |
19 | TAN A C W, POLO⁃CAMBRONELL B J, PROVAGGI E, et al. Design and Development of Low Cost Polyurethane Biopolymer Based on Castor Oil and Glycerol for Biomedical Applications[J]. Biopolymers, 2018, 109(2): e23078. |
20 | COMÍ, M, LLIGADAS, G, RONDA J C, et al. Synthesis of Castor⁃Oil Based Polyurethanes Bearing Alkene/Alkyne Groups and Subsequent Thiol⁃Eneyne Post⁃Modification Eneyne[J]. Polymer, 2016, 103: 163⁃170. |
21 | IBRAHIM S, AHMAD A, MOHAMED N S. Synthesis and Characterization of Castor Oil⁃Based Polyurethane for Potential Application as Host in Polymer Electrolytes[J]. Bulletin of Materials Science, 2015, 38(5):1 155⁃1 161. |
22 | STEMPFLE F, ORTMANN P, MECKING S. Long⁃Chain Aliphatic Polymers to Bridge the Gap between Semicrystalline Polyolefins and Traditional Polycondensates[J]. Chemical Reviews, 2016, 116(7): 4 597⁃4 641. |
23 | HÄUßLER M, ECK M, ROTHAUER D, et al. Closed⁃loop Recycling of Polyethylene⁃like Materials[J], Nature, 2021, 590(7846): 423⁃427. |
24 | MAHMOO N, YUAN Z, SCHMIDT J, et al. Depolymerization of Lignins and Their Applications for the Preparation of Polyols and Rigid Polyurethane Foams: A Review[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 317⁃329. |
25 | UPTON B M, KASKO A M. Strategies for the Conversion of Lignin to High⁃Value Polymeric Materials: Review and Perspective. Chemical Reviews, 2016, 116(4): 2 275⁃2 306. |
26 | COATES G W, GETZLER Y D. Chemical Recycling to Monomer for an Ideal, Circular Polymer Economy[J]. Nature Reviews Materials, 2020, 5(7): 501⁃516. |
27 | MAHMOOD N, YUAN Z, SCHMIDT J, et al. Preparation of Bio⁃Based Rigid Polyurethane Foam Using Hydrolytically Depolymerized Kraft Lignin via Direct Replacement or Oxypropylation[J]. European Polymer Journal, 2015,68: 1⁃9. |
28 | WANG S, MA S, XU C, et al. Vanillinderived High⁃Performance Fame Retardant Epoxy Resins: Facile Synthesis and Properties[J]. Macromolecules, 2017, 50(5):1 892⁃1 901. |
29 | LI R J, GUTIERREZ J, CHUNG Y L, et al. A Lignin⁃Epoxy Resin Derived From Biomass as an Alternative to Formaldehyde⁃Based Wood Adhesives[J]. Green Chemi⁃stry, 2018, 20(7): 1 459⁃1 466. |
30 | WINNACKER M, RIEGER B. Recent Progress in Sustainable Polymers Obtained From Cyclic Terpenes: Synthesis, Properties, and Application Potential[J]. ChemSusChem, 2015, 8(15): 2 455⁃2 471. |
31 | GANDINI A, LACERDA T M. From Monomers to Polymers From Renewable Resources: Recent Advances[J]. Progress in Polymer Science, 2015,48: 1⁃39. |
32 | SATOH, K, NAKAHARA A, MUKUNOKI K, et al. Sustainable Cycloolefin Polymer From Pine Tree Oil for Optoelectronics Material: Living Cationic Polymerization of β⁃pinene and Catalytic Hydrogenation of High⁃Molecular⁃Weight Hydrogenated Poly (β⁃Pinene)[J]. Polymer Chemistry, 2014, 5(9): 3 222⁃3 230. |
33 | SHARMA S, SRIVASTAVA A K. Alternating Copolymers of Limonene with Methyl Methacrylate: Kinetics and Mechanism[J]. Journal of Macromolecular Science, Part A, 2003, 40(6): 593⁃603. |
34 | HAUENSTEIN O, AGARWAL S, GREINER A. Bio⁃Based Polycarbonate as Synthetic Toolbox[J]. Nature Communications, 2016, 7: 11862. |
35 | PARRINO F, FIDALGO A, PALMISANO L, et al. Polymers of Limonene Oxide and Carbon Dioxide: Polycarbonates of the Solar Economy[J]. ACS Omega, 2018, 3(5): 4 884⁃4 890. |
36 | 王献红, 周庆海, 秦玉升, 等. 如何将二氧化碳变“废”为“宝”——中国科学院关键技术突破助推二氧化碳共聚物产业化[J]. 科技促进发展, 2016, 2: 223⁃227. |
WANG X H,ZHOU Q H,QIN Y S,et al.How to Achieve Resource Utilization of Carbon Dioxide Transforming Emissions into Materials⁃⁃ Breakthroughs in Key Technologies to Boost the Industrialization of Carbon Dioxide Copolymer[J]. Science&Technology for Development, 2016, 2: 223⁃227. | |
37 | SULLEY G S, GREGORY G L, CHEN T T D, et al. Switchable Catalysis Improves the Properties of CO2⁃Derived Polymers: Poly (cyclohexene carbonate⁃b⁃ε⁃decalactone⁃b⁃cyclohexene carbonate) Adhesives, Elastomers, and Toughened Plastics[J]. Journal of the American Chemical Society, 2020, 142(9): 4 367⁃4 378. |
38 | 安 赛, 祁 波, 郭伊荇, 等. 典型介孔硅基固体酸催化剂的新进展[J]. 科学通报, 2018, 63: 3 546⁃3 554. |
AN S, QI B, GUO Y H, et al. Latest Progress on the Typical Mesoporous Si⁃based Solid Acid Catalysts[J]. Chinese Science Bulletin, 2018, 63: 3 546⁃3 554. | |
39 | VASIĆ K, HOJNIK PODREPŠEK G, KNEZ Ž, et al. Biodiesel Production Using Solid Acid Catalysts Based on Metal Oxides[J]. Catalysts, 2020, 10(2): 237. |
40 | CLARK J H, MONKS G L, Nightingale D J, et al. A New Solid Acid⁃Based Route to Linear Alkylbenzenes[J]. Journal of Catalysis, 2000, 193(2): 348⁃350. |
41 | SHI G L, YU F, YAN X L, et al. Synthesis of Tetragonal Sulfated Zirconia Via a Novel Route for Biodiesel Production[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 311⁃316. |
42 | TAMAMI B, PARVANAK BORUJENY K. Chemoselective Tetrahydropyranylation of Alcohols and Phenols Using Polystyrene Supported Aluminium Chloride as a Catalyst[J]. Tetrahedron Letters, 2004, 45(4): 715⁃718. |
43 | BORUJENI K P, TAMAMI B. Polystyrene and Silica Gel Supported AlCl3 as Highly Chemoselective Heterogeneous Lewis Acid Catalysts for Friedel⁃Crafts Sulfonylation of Aromatic Compounds[J]. Catalysis Communications, 2007, 8(8): 1 191⁃1 196. |
44 | BORUJENI K P, MASSAH A R. Synthesis and Application of Polystyrene Supported Aluminium Triflate as a New Polymeric Lewis Acid Catalyst[J]. Reactive and Functional Polymers, 2006, 66(10): 1 126⁃1 131. |
45 | HARA M, YOSHIDA T, TAKAGAKI A, et al. A Carbon Material as a Strong Protonic Acid[J]. Angewandte Chemie International Edition, 2004, 43(22): 2 955⁃2 958. |
46 | OKAMURA M, TAKAGAKI A, TODA M, et al. Acid⁃Catalyzed Reactions on Flexible Polycyclic Aromatic Carbon in Amorphous Carbon[J]. Chemistry of Materials, 2006, 18(13): 3 039⁃3 045. |
47 | TAKAGAKI A, TODA M, OKAMURA M, et al. Esterification of Higher Fatty Acids by a Novel Strong Solid Acid[J]. Catalysis Today, 2006, 116(2): 157⁃161. |
48 | WANG X, LIU R, WAJE M M, et al. Sulfonated Ordered Mesoporous Carbon as a Stable and Highly Active Protonic Acid Catalyst[J]. Chemistry of Materials, 2007, 19(10): 2 395⁃2 397. |
49 | CHICA A. Zeolites: Promised Materials for the Sustainable Production of Hydrogen[J]. ISRN Chemical Engineering, 2013: 907425. |
50 | 刘 蓉, 王晓龙, 郜时旺, 等. 一种利用核壳结构分子筛催化剂催化杂醇油转化的方法: 中国, CN110773226A[P]. 2020⁃02⁃11. |
51 | SHANMUGAM S, XU J, BOYER C. Light⁃Regulated Polymerization under Near⁃Infrared/Far⁃Red Irradiation Catalyzed by Bacteriochlorophylla[J]. Angewandte Chemie International Edition, 2016, 55(3): 1 036⁃1 040. |
52 | WU Z, JUNG K, BOYER C. Effective Utilization of NIR Wavelengths for Photo‐Controlled Polymerization: Penetration Through Thick Barriers and Parallel Solar Syntheses[J]. Angewandte Chemie International Edition, 2020, 59(5): 2 013⁃2 017. |
53 | JIANG J, YE G, LORANDI F, et al. Localized Surface Plasmon Resonance Meets Controlled/Living Radical Polymerization: An Adaptable Strategy for Broadband Light⁃Regulated Macromolecular Synthesis[J]. Angewandte Chemie International Edition, 2019, 58(35): 12 096⁃12 101. |
54 | KÜTAHYA C, WANG P, LI S, et al. Carbon Dots as a Promising Green Photocatalyst for Free Radical and ATRP⁃Based Radical Photopolymerization with Blue LEDs[J]. Angewandte Chemie International Edition, 2020, 59(8): 3 166⁃3 171. |
55 | MOHAMED M A, SALLEH W N W, JAAFAR J, et al. Incorporation of N⁃doped TiO2 Nanorods in Regenerated Cellulose Thin Films Fabricated From Recycled Newspaper as a Green Portable Photocatalyst[J]. Carbohydrate Polymers, 2015, 13: 429⁃437. |
56 | PUSKAS J E, SEO K S, SEN M Y. Green Polymer Chemistry: Precision Synthesis of Novel Multifunctional Poly(ethylene glycol)s Using Enzymatic Catalysis[J]. European Polymer Journal, 2011, 47(4): 524⁃534. |
57 | SOKOŁOWSKA M, STACHOWSKA E, CZAPLICKA M, et al. Effect of Enzymatic versus Titanium Dioxide/Silicon Dioxide Catalyst on Crystal Structure of ‘Green’ Poly[(butylene succinate)⁃co⁃(dilinoleic succinate)] Copolymers[J]. Polymer International, 2021, 70 (5): 514⁃526. |
58 | HEFFERNAN M A, O’REILLY E J. Rapid Microwave Assisted Synthesis and Characterisation of a Semiconducting Polymer with pKa Tuneable Degradation Properties[J]. European Polymer Journal, 2019, 114: 206⁃212. |
59 | KUMAR A, KUANG Y, LIANG Z, et al. Microwave Chemistry, Recent Advancements, and Eco⁃Friendly Microwave⁃Assisted Synthesis of Nanoarchitectures and their Applications: A Review[J]. Materials Today Nano, 2020, 11: 100076. |
60 | RICHARDS W T, LOOMIS A L. The Chemical Effects of High Frequency Sound Waves I:A preliminary Survey[J]. Journal of the American Chemical Society, 1927, 49(12): 3 086⁃3 100. |
61 | SUSLICK K S, PRICE G J. Applications of Ultrasound to Materials Chemistry[J]. Annual Review of Materials Science, 1999, 29(1): 295⁃326. |
62 | BLASKOVICOVA M, GAPLOVSKY A, BLASKO J. Synthesis and Photochemistry of 1⁃Iodocyclohexene:Influence of Ultrasound on Ionic Vs. Radical Behaviour[J]. Molecules, 2007, 12(2): 188⁃193. |
63 | WANG X K, CHEN G H, GUO W L. Sonochemical Degradation Kinetics of Methyl Violet in Aqueous Solutions[J]. Molecules, 2003, 8(1): 40⁃44. |
64 | WANG X, WANG Y, HOU H, et al. Ultrasonic Method to Synthesize Glucan⁃g⁃poly(acrylic acid)/Sodium Lignosulfonate Hydrogels and Studies of Their Adsorption of Cu2+ from Aqueous Solution[J]. ACS Sustainable Chemistry & Engineering, 2017, 5 (8): 6 438⁃6 446. |
65 | FENG L, LIU J, XU C, et al. Better Understanding the Polymerization Kinetics of Ultrasonic⁃Template Method and New Insight on Sludge Floc Characteristics Research[J]. Science of the Total Environment, 2019, 689: 546⁃556. |
66 | REHM B H A. Bacterial Polymers: Biosynthesis, Modifications and Applications[J]. Nature Reviews Microbiology, 2010, 8(8): 578⁃592. |
67 | BONARTSEV A P, BONARTSEVA G A, RESHETOV I V, et al. Application of Polyhydroxyalkanoates in Medicine and the Biological Activity of Natural Poly (3⁃hydroxybutyrate)[J]. Acta Naturae, 2019, 11(2): 41. |
68 | MASOOD F. Polyhydroxyalkanoates in the Food Packaging Industry[M]. Academic Press, 2017:153⁃177. |
69 | POIRIER Y, NAWRATH C, SOMERVILLE C. Production of Polyhydroxyalkanoates, A Family of Biodegradable Plastics and Elastomers, in Bacteria and Plants[J]. Bio/Technology, 1995, 13(2): 142⁃150. |
70 | Lin J W P, Dudek L P. Synthesis and Properties of Poly (2, 5‐thienylene)[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1980, 18(9): 2 869⁃2 873. |
71 | 温变英. 高分子材料成型加工新技术[M]. 北京: 化学工业出版社, 2014:101⁃114. |
72 | SANZ⁃HORTA R, MARTINEZ⁃CAMPOS E, GARCÍA C, et al. Breath Figures Makes Porous the “So⁃Called” Skin Layer Obtained in Polymer Foams Prepared by Supercritical CO2 Treatments[J]. The Journal of Supercritical Fluids, 2021, 167: 105051. |
73 | LIAN X, MOU W, KUANG T, et al. Synergetic Effect of Nanoclay and Nano⁃CaCO3 Hybrid Filler Systems on the Foaming Properties and Cellular Structure of Polystyrene Nanocomposite Foams Using Supercritical CO2[J].Cellular Polymers, 2020, 39(5): 185⁃202. |
74 | 陈竹生. 聚合物反应注射成型[J]. 高分子通报, 1989, (2): 45⁃50. |
CHEN Z S. Polymer Reaction Injection Molding[J]. Chinese Polymer Bulletin, 1989, (2): 45⁃50. | |
75 | 瞿金平, 陈佳佳, 刘环裕,等. 体积拉伸形变加工成型方法最新研究进展[J]. 高分子通报, 2013, (9): 9⁃17. |
QU J P , CHEN J J, LIU H Y, et al.The Latest Research on Volume Elongational Deformation Plasticizing Processing Method[J].Polymer Bulletin, 2013, (9): 9⁃17. | |
76 | CLARK J H, FARMER T J, HERRERO DAVILA L, et al. Circular Economy Design Considerations for Research and Process Development in the Chemical Sciences[J]. Green Chemistry, 2016, 18(14): 3 914⁃3 934. |
77 | IGNATYEV I, THIELEMANS W, VANDERBEKE B. Recycling of Polymers: A Review[J]. ChemSusChem, 2014, 7(6): 1 579⁃1 593. |
78 | NISHIDA H. Development of Materials and Technologies for Control of Polymer Recycling[J]. Polymer Journal, 2011, 43(5): 435⁃447. |
79 | CHOI S, CHOI H M. Eco⁃friendly, Expeditious Depolymerization of PET in the Blend Fabrics by Using a Bio⁃based Deep Eutectic Solvent under Microwave Irradiation for Composition Identification[J]. Fibers and Polymers, 2019, 20(4): 752⁃759. |
80 | SHEEL A, PANT D. Recycling of Polyethylene Terephthalate Bottles[M]. William Andrew Publishing, 2019: 61⁃84. |
81 | XU G, JIANG H, STAPELBERG M, et al. Self⁃Perpetuating Carbon Foam Microwave Plasma Conversion of Hydrocarbon Wastes into Useful Fuels and Chemicals[J]. Environmental Science & Technology, 2021, 55(9):doi:10.1021/acs.est.0c06977. |
82 | 戴铁军. 包装废弃物的回收利用与管理[M]. 北京: 科学技术出版社, 2016:5. |
83 | 邹琦志. 废纸造纸企业减排措施研究[J]. 资源节约与环保, 2014(6): 33⁃34. |
84 | AYRE D. Technology Advancing Polymers and Polymer Composites Towards Sustainability: A Review[J]. Current Opinion in Green and Sustainable Chemistry, 2018, 13: 108⁃112. |
85 | ANTONIADOU M, VARZAKAS T, TZOUTZAS I. Circular Economy in Conjunction with Treatment Methodologies in the Biomedical and Dental Waste Sectors[J]. Circular Economy and Sustainability, 2021(1):1⁃30. |
86 | ILYAS R A, SAPUAN S M, KADIER A, et al. Advanced Processing, Properties, and Applications of Starch and Other Bio⁃Based Polymers[M].Elsevier,2020:111⁃138. |
87 | TSERKI V, MATZINOS P, ZAFEIROPOULOS N E, et al. Development of Biodegradable Composites with Treated and Tompatibilized Lignocellulosic Fibers[J]. Journal of Applied Polymer Science, 2006, 100(6): 4 703⁃4 710. |
[1] | ZHANG Xin, QUAN Shumiao. Study on current status of recycling and reutilization of waste agricultural films based on China’s policy [J]. China Plastics, 2022, 36(7): 136-142. |
[2] | ZHU Zixuan, LIU Haifen, FAN Jiazhao, LI Huafeng, WANG Lixin. Research progress of adhesive materials and co⁃extrusion adhesion technology for photovoltaic backsheet [J]. China Plastics, 2022, 36(7): 174-186. |
[3] | SONG Jin, XU Hang, ZOU Wei, WANG Hong, ZHANG Chen. Preparation and adsorption properties of surface⁃functionalized polyacrylate porous beads for Cu2+ [J]. China Plastics, 2022, 36(7): 8-13. |
[4] | MA Zhanfeng, NIU Guoqiang, LU Shan. China plastics industry (2021) [J]. China Plastics, 2022, 36(6): 142-148. |
[5] | SHAO Linying, XI Yuewei, WENG Yunxuan. Research progress in degradation characteristics of poly(lactic acid) composites [J]. China Plastics, 2022, 36(6): 155-164. |
[6] | YANG Xiaolong, CHEN Wenjing, LI Yongqing, YAN Xiaokun, WANG Xiulei, XIE Pengcheng, MA Xiuqing. Research progress in polymer/graphene conductive composites [J]. China Plastics, 2022, 36(6): 165-173. |
[7] | NI Junjie, GUO Rui, ZHANG Bing. Effect of pyrolysis regeneration technology of aramid material for police equipment based on temperature field optimization [J]. China Plastics, 2022, 36(6): 6-9. |
[8] | WEI Maoqiang. Development and discussion of agricultural plastic film [J]. China Plastics, 2022, 36(6): 92-99. |
[9] | FENG Xiu, SHEN Ying, XU Sheng. Synthesis and application of pentavalent organic bismuth for polyurethane [J]. China Plastics, 2022, 36(5): 104-109. |
[10] | SUN Qi, GAO Xing, CUI Xuemei, LIAN Huiqin, CUI Xiuguo, WANG Xiaodong. Research progress in development and applications of black phosphorene for flame retardancy of polymers [J]. China Plastics, 2022, 36(5): 133-139. |
[11] | WEI Liao. Research progress in application of water⁃soluble polymer materials for oil and gas field fracturing [J]. China Plastics, 2022, 36(5): 149-157. |
[12] | CHEN Sheng, LIANG Yingchao, WU Fangjuan, FANG Hui, FAN Xinfeng, CHEN Hui, WANG Yonggang. Preparation and interfacial modification of polyamide 6/bidirectional warp⁃knitted glass fiber composites [J]. China Plastics, 2022, 36(5): 24-28. |
[13] | TIAN Chifeng, ZHANG Hongshen. Study on friction charge and high⁃voltage electrostatic separation of automotive polymer particles based on multi⁃fin friction bucket [J]. China Plastics, 2022, 36(5): 75-80. |
[14] | PENG Bo, XIAO Yunbin, GU Jiabao, CHEN Zijun, TANG Yanhuang, ZHU Gang, XU Huanxiang. Research progress in preparation and properties of polymer/graphene composites [J]. China Plastics, 2022, 36(4): 190-197. |
[15] | JIANG Sen, WANG Liyan, CHEN Yanming, ZHANG Le, ZHAI Guifa. Synthesis thermal performance of PBS copolyester modified with MPO [J]. China Plastics, 2022, 36(4): 24-29. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||