京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2021, Vol. 35 ›› Issue (11): 64-70.DOI: 10.19491/j.issn.1001-9278.2021.11.010
• Materials and Properties • Previous Articles Next Articles
ZENG Zequn, WU Jinyu, XIANG Hui, LIU Weijie, YIN Jun()
Received:
2021-04-10
Online:
2021-11-26
Published:
2021-11-23
CLC Number:
ZENG Zequn, WU Jinyu, XIANG Hui, LIU Weijie, YIN Jun. Effect of Hygroscopic Behavior on Properties and Applications of PMI Foam[J]. China Plastics, 2021, 35(11): 64-70.
正常试样 | 浸水96 h试样 | 70 ℃/相对湿度85 %饱和吸湿 | ||||||
---|---|---|---|---|---|---|---|---|
密度/kg?m-3 | 压缩强度/MPa | 标准偏差/MPa | 密度/ kg?m-3 | 压缩强度/ MPa | 标准偏差/ MPa | 密度/kg?m-3 | 压缩强度/ MPa | 标准偏差/ MPa |
34.30 | 0.40 | 0.01 | 34.09 | 0.24 | 0.01 | 34.00 | 0.26 | 0.02 |
52.75 | 1.06 | 0.01 | 53.65 | 0.62 | 0.03 | 54.35 | 0.56 | 0.02 |
66.70 | 1.37 | 0.02 | 68.53 | 1.18 | 0.12 | 68.55 | 1.03 | 0.02 |
114.45 | 3.37 | 0.07 | 115.93 | 3.19 | 0.07 | 116.39 | 2.00 | 0.05 |
正常试样 | 浸水96 h试样 | 70 ℃/相对湿度85 %饱和吸湿 | ||||||
---|---|---|---|---|---|---|---|---|
密度/kg?m-3 | 压缩强度/MPa | 标准偏差/MPa | 密度/ kg?m-3 | 压缩强度/ MPa | 标准偏差/ MPa | 密度/kg?m-3 | 压缩强度/ MPa | 标准偏差/ MPa |
34.30 | 0.40 | 0.01 | 34.09 | 0.24 | 0.01 | 34.00 | 0.26 | 0.02 |
52.75 | 1.06 | 0.01 | 53.65 | 0.62 | 0.03 | 54.35 | 0.56 | 0.02 |
66.70 | 1.37 | 0.02 | 68.53 | 1.18 | 0.12 | 68.55 | 1.03 | 0.02 |
114.45 | 3.37 | 0.07 | 115.93 | 3.19 | 0.07 | 116.39 | 2.00 | 0.05 |
正常试样 | 浸水72 h试样 | ||||||||
---|---|---|---|---|---|---|---|---|---|
密度/ kg?m-3 | 拉伸强度/MPa | 标准偏差/MPa | 断裂伸长率/% | 标准偏差/% | 密度/ kg?m-3 | 拉伸强度/MPa | 标准偏差/MPa | 断裂伸长率/% | 标准偏差/% |
30.69 | 0.88 | 0.07 | 4.03 | 0.38 | 29.50 | 0.48 | 0.03 | 19.26 | 2.00 |
50.75 | 1.47 | 0.02 | 3.26 | 0.07 | 50.01 | 0.95 | 0.16 | 20.20 | 1.93 |
81.84 | 2.84 | 0.21 | 4.17 | 0.28 | 80.87 | 1.62 | 0.02 | 14.23 | 2.55 |
113.17 | 3.84 | 0.26 | 3.37 | 0.20 | 115.54 | 2.50 | 0.08 | 6.72 | 0.33 |
正常试样 | 浸水72 h试样 | ||||||||
---|---|---|---|---|---|---|---|---|---|
密度/ kg?m-3 | 拉伸强度/MPa | 标准偏差/MPa | 断裂伸长率/% | 标准偏差/% | 密度/ kg?m-3 | 拉伸强度/MPa | 标准偏差/MPa | 断裂伸长率/% | 标准偏差/% |
30.69 | 0.88 | 0.07 | 4.03 | 0.38 | 29.50 | 0.48 | 0.03 | 19.26 | 2.00 |
50.75 | 1.47 | 0.02 | 3.26 | 0.07 | 50.01 | 0.95 | 0.16 | 20.20 | 1.93 |
81.84 | 2.84 | 0.21 | 4.17 | 0.28 | 80.87 | 1.62 | 0.02 | 14.23 | 2.55 |
113.17 | 3.84 | 0.26 | 3.37 | 0.20 | 115.54 | 2.50 | 0.08 | 6.72 | 0.33 |
处理条件 | 密度/kg?m-3 | 压缩强度/MPa | 标准偏差/MPa |
---|---|---|---|
正常 | 111.17 | 3.19 | 0.02 |
浸水1 h后烘干 | 111.41 | 3.28 | 0.02 |
浸水2 h后烘干 | 111.70 | 3.27 | 0.02 |
浸水3 h后烘干 | 111.65 | 3.27 | 0.01 |
浸水4 h后烘干 | 111.62 | 3.29 | 0.03 |
处理条件 | 密度/kg?m-3 | 压缩强度/MPa | 标准偏差/MPa |
---|---|---|---|
正常 | 111.17 | 3.19 | 0.02 |
浸水1 h后烘干 | 111.41 | 3.28 | 0.02 |
浸水2 h后烘干 | 111.70 | 3.27 | 0.02 |
浸水3 h后烘干 | 111.65 | 3.27 | 0.01 |
浸水4 h后烘干 | 111.62 | 3.29 | 0.03 |
处理条件 | 密度/ kg?m-3 | 拉伸 强度/MPa | 标准 偏差/MPa | 断裂 伸长率/% | 标准 偏差/% |
---|---|---|---|---|---|
正常 | 113.17 | 3.84 | 0.26 | 3.37 | 0.20 |
浸水4 h | 113.05 | 3.25 | 0.05 | 2.85 | 0.06 |
浸水72 h | 115.54 | 2.50 | 0.08 | 6.72 | 0.33 |
浸水72 h后烘干 | 114.08 | 3.34 | 0.07 | 3.52 | 0.06 |
处理条件 | 密度/ kg?m-3 | 拉伸 强度/MPa | 标准 偏差/MPa | 断裂 伸长率/% | 标准 偏差/% |
---|---|---|---|---|---|
正常 | 113.17 | 3.84 | 0.26 | 3.37 | 0.20 |
浸水4 h | 113.05 | 3.25 | 0.05 | 2.85 | 0.06 |
浸水72 h | 115.54 | 2.50 | 0.08 | 6.72 | 0.33 |
浸水72 h后烘干 | 114.08 | 3.34 | 0.07 | 3.52 | 0.06 |
实验 序号 | 处理条件 | 密度/ kg?m-3 | 拉伸强度/ MPa | 标准偏差/ MPa |
---|---|---|---|---|
实验1 | 正常45°斜切拼接 | 105.08 | 3.60 | 0.02 |
实验2 | 粘接固化后浸水4 h | 112.87 | 2.73 | 0.05 |
实验3 | 粘接固化后浸水72 h | 113.21 | 2.07 | 0.04 |
实验4 | 浸水4 h后粘接固化 | 106.10 | 2.95 | 0.05 |
实验5 | 浸水72 h后粘接固化 | 无法粘接 | 无法粘接 | - |
实验6 | 粘接固化后浸水4 h,烘干 | 114.56 | 3.42 | 0.46 |
实验7 | 粘接固化后浸水72 h,烘干 | 113.12 | 3.20 | 0.11 |
实验8 | 浸水4 h后烘干,粘接固化 | 110.76 | 3.60 | 0.04 |
实验9 | 浸水72h后烘干,粘接固化 | 111.41 | 3.71 | 0.12 |
实验 序号 | 处理条件 | 密度/ kg?m-3 | 拉伸强度/ MPa | 标准偏差/ MPa |
---|---|---|---|---|
实验1 | 正常45°斜切拼接 | 105.08 | 3.60 | 0.02 |
实验2 | 粘接固化后浸水4 h | 112.87 | 2.73 | 0.05 |
实验3 | 粘接固化后浸水72 h | 113.21 | 2.07 | 0.04 |
实验4 | 浸水4 h后粘接固化 | 106.10 | 2.95 | 0.05 |
实验5 | 浸水72 h后粘接固化 | 无法粘接 | 无法粘接 | - |
实验6 | 粘接固化后浸水4 h,烘干 | 114.56 | 3.42 | 0.46 |
实验7 | 粘接固化后浸水72 h,烘干 | 113.12 | 3.20 | 0.11 |
实验8 | 浸水4 h后烘干,粘接固化 | 110.76 | 3.60 | 0.04 |
实验9 | 浸水72h后烘干,粘接固化 | 111.41 | 3.71 | 0.12 |
1 | HERMAN F S. PMI Foam Cores Find Further Applications[J]. Reinforced Plastics, 2000, 44(1):36⁃38. |
2 | 詹茂盛, 王 凯. 聚酰亚胺泡沫[M]. 北京:国防工业出版社, 2010:11⁃16. |
3 | 曲春艳,谢克磊,马瑛剑,等.聚甲基丙烯酰亚胺(PMI)泡沫塑料的制备与表征[J].材料工程,2008(11):19⁃23. |
QU C Y, XIE K L, MA Y J, et al. Preparation and Characterization of Polymethacrylimide Foams[J]. Journal of Materials Engineering, 2008(11):19⁃23. | |
4 | 李克迪,方勇,胡爱军,等.储存期对聚甲基丙烯酰亚胺(PMI)泡沫性能的影响研究[J].玻璃钢/复合材料,2016(3):70⁃74. |
LI K D, FANG Y, HU A J, et al. Shelf Life Property of Polymethacrylimide(PMI) Foam Core[J]. Fiber Reinforced Plastics/Composites, 2016(3):70⁃74. | |
5 | 刘燕青,黄安民,刘婷,等.聚甲基丙烯酰亚胺泡沫塑料的制备及研究现状[J].塑料科技,2012,40(6):86⁃90. |
LIU Y Q, HUANG A M, LIU T, et al. Research Situation of Polymethacrylimide Foam Plastics and Its Preparation[J]. Plastics Science and Technology, 2012,40(6):86⁃90. | |
6 | 张乐,张广成,米星宇,等.高密度PMI泡沫塑料的制备、结构与性能研究[J].宇航材料工艺,2012,42(6):60⁃64. |
ZHANG L, ZHANG G C, MI X Y, et al. Preparation, Structure and Properties of High Density PMI Foam[J]. Aerospace Materials & Technology, 2012,42(6):60⁃64. | |
7 | 董安琪,段跃新,肇研,等.湿热环境对PMI泡沫夹芯复合材料性能的影响[J].复合材料学报,2012,29(2):46⁃52. |
DONG A Q, DUAN Y X, ZHAO Y, et al. Effects of Hydrothermal Condition on Properties of Polymethacrylimide (PMI) Foam Cored Sandwich Structure[J].Acta Materiae Compositae Sinica, 2012, 29(2):46⁃52. | |
8 | 刘永涛,杨杰,刘新东.夹层结构用泡沫芯材的耐水性能[J].工程塑料应用,2018,46(4):108⁃112. |
LIU Y T, YANG J, LIU X D. Water Durability of Foam Core Used in Sandwich Structure[J]. Engineering Plastics Application,2018,46(4):108⁃112. | |
9 | 鲁平才,阮诗平,焦自保. 低吸水性聚甲基丙烯酰亚胺泡沫塑料的制备方法及其应用:中国,CN102675796A[P].2012⁃09⁃19. |
10 | 边佳燕,刘 钧. 面板厚度对PMI泡沫夹层复合材料吸湿性能影响[C]//第二十一届全国玻璃钢/复合材料学术年会论文集(《玻璃钢/复合材料》2016增刊).北京:中国硅酸盐学会玻璃钢分会,2016:4. |
11 | 陈吉平,毛敏梁,郑义珠,等.湿热环境下的PMI泡沫材料压缩蠕变特性[J].工程塑料应用,2020,48(2):71⁃76. |
CHEN J P, MAO M L, ZHENG Y Z, et al. Compressive Creep Properties of PMI Foam in Hydrothermal Condition[J]. Engineering Plastics Application,2020,48(2):71⁃76. | |
12 | 刘钧,边佳燕,鲍铮,周远明.吸湿环境对石英纤维增强环氧树脂面板/PMI泡沫夹层结构复合材料吸湿行为的影响[J].国防科技大学学报,2019,41(5):193⁃198. |
LIU J, BIAN J Y, BAO Z, et al. Effect of Environment on Moisture Absorption Behavior of Quartz Fiber Reinforced Epoxy Panel/PMI Core Sandwich Composites[J]. Journal of National University of Defense Technology,2019,41(5):193⁃198. | |
13 | 张汝光.湿态环境下聚合物复合材料的吸水——(Ⅲ):吸水对复合材料力学性能的影响[J].玻璃钢,2001(1):43⁃49. |
ZHANG R G. Water Absorption of Polymer Composites in Wet Environment ——(Ⅲ):Effect of Water Absorption on Mechanical Properties of Composites[J].Fiber Reinforced Plastics,2001(1):43⁃49. | |
14 | 郑国栋,徐晓明,雷娟娟,等.海水对PMI泡沫夹芯复合材料吸湿性能以及力学性能的影响[J].玻璃钢/复合材料,2019(9):105⁃109. |
ZHENG G D, XU X M, LEI J J, et al.Effect of Seawater on Moisture Absorption and Mechanical Properties of PMI Foam Sandwich Composites[J].Fiber Reinforced Plastics/Composites,2019(9):105⁃109. | |
15 | 边佳燕, 刘钧, 鲍铮,等. 吸湿对PMI泡沫夹层结构复合材料力学性能和介电性能的影响[J]. 电子机械工程, 2018, 34(4):35⁃39,43. |
BIAN J Y, LIU J, BAO Z, et al. Effect of Moisture Absorption on Mechanical Properties and Dielectric Properties of PMI Foam Core Sandwich Composites[J]. Electro⁃Mechanical Engineering, 2018, 34(4):35⁃39,43. | |
16 | SIIVOLA J T, MINAKUCHI S, TAKEDA N. Effect of Temperature and Humidity Conditions on Polymethacrylimide (PMI) Foam Core Material and Indentation Response of Its Sandwich Structures[J]. Journal of Sandwich Structures & Materials, 2015, 17(4):149⁃155. |
17 | , Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials[S]. West Conshohocken: ASTM International, 2020. |
18 | , Standard Test Method for Compressive Properties of Rigid Cellular Plastics[S]. West Conshohocken: ASTM International, 2016. |
19 | , Standard Test Method for Tensile Pro⁃perties of Plastics[S]. West Conshohocken: ASTM International,2014. |
20 | , Standard Test Method for Shear Properties of Sandwich Core Materials[S]. West Conshohocken: ASTM International,2020. |
21 | 边佳燕. PMI泡沫夹层结构复合材料吸湿性能研究[D].北京:国防科学技术大学,2016. |
22 | 李子东.湿气和水分对胶粘界面的影响[J].粘接,1987(5):28⁃30,27. |
LI Z D.Effect of Humidity and Moisture on Adhesive Interface[J].Adhesion,1987(5):28⁃30,27. |
[1] | YU Changyong, XIN Zhong. Effect of α/β complex nucleating agent based on hexahydrophthalate on properties of polypropylene [J]. China Plastics, 2022, 36(7): 121-128. |
[2] | TAN Liqin, LIU Weiqu, LIANG Liyan, WANG Shuo, FENG Zhiqiang, LIN Jiaming. Preparation and performance of epoxy resin modified with mercaptan polysiloxane [J]. China Plastics, 2022, 36(7): 21-29. |
[3] | XU Jie, ZHONG Jinfu, TONG Xiaoqian, LI Guangfu, FU Dongliang, LI Chengcheng. Preparation and performance of carboxyl⁃terminated tannic acid/gallic acid⁃based epoxy composite [J]. China Plastics, 2022, 36(7): 44-50. |
[4] | LI Kaize, XIN Yong. Properties of thermoplastic polyurethane composites modified with carbon nanotubes [J]. China Plastics, 2022, 36(6): 1-5. |
[5] | LEI Yujie, CHEN Minghuan, WANG Jieyao, CHEN Wangzhi, LI Lei. Cross⁃linked foaming process and performance of recycled polyethylene [J]. China Plastics, 2022, 36(6): 124-129. |
[6] | WANG Shuai, ZHANG Yudi, YANG Fukai, XU Xinyu. Preparation and properties of polyimide/multi⁃walled carbon nanotubes composite foams [J]. China Plastics, 2022, 36(6): 39-45. |
[7] | WANG Jinye, TANG Bohu, YANG Lining, XIE Meng, GUO Zechao, YANG Guang. Study on multi⁃jet⁃fusion forming process of PA12 parts [J]. China Plastics, 2022, 36(6): 81-86. |
[8] | SUN Wenbo, XIN Chunling, HE Yadong, ZHAI Yujiao, YAN Baorui. Influence of micro⁃foaming injection molding process on cell structure of glass⁃fiber⁃reinforced PBT products [J]. China Plastics, 2022, 36(5): 1-7. |
[9] | JI Feng, GONG Weihua, ZHANG Yan, LUO Shuiyuan, YU Qingyu, ZHU Junqiu, GUO Jiangbin. Preparation of biodegradable PBAT foaming particles by supercritical carbon dioxide autoclave foaming technology [J]. China Plastics, 2022, 36(5): 122-126. |
[10] | WANG Ke, LONG Chunguang. Mechanical and tribological properties of ultra⁃high molecular weight polyethylene/sepiolite fiber composites [J]. China Plastics, 2022, 36(5): 19-23. |
[11] | CHEN Sheng, LIANG Yingchao, WU Fangjuan, FANG Hui, FAN Xinfeng, CHEN Hui, WANG Yonggang. Preparation and interfacial modification of polyamide 6/bidirectional warp⁃knitted glass fiber composites [J]. China Plastics, 2022, 36(5): 24-28. |
[12] | HE Hezhi, XU Li, YANG Yike. Effect of prestress on mechanical properties of PC/CF laminates [J]. China Plastics, 2022, 36(4): 1-5. |
[13] | LI Suyuan, LIU Huipeng, GONG Shun, HUANG Guotao, LI Yucai, WU Xin, DENG Jianping, PAN Kai. Preparation and characterization of EVA foaming materials modified with thermoplastic polyamide elastomer [J]. China Plastics, 2022, 36(4): 6-14. |
[14] | ZHANG Jiufu, LUO Kaiqiang, XU Jun, GUO Baohua. Study on comprehensive properties and influencing factors of long glass fiber reinforced PA66 composites [J]. China Plastics, 2022, 36(3): 1-8. |
[15] | ZHANG Shucheng, TANG Wenbin, YU Tianjiao, XU Zhenzhen, XING Jian. Preparation and properties of polyurethane foams with different contents of polyether polyol [J]. China Plastics, 2022, 36(3): 104-109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||