
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2021, Vol. 35 ›› Issue (2): 132-142.DOI: 10.19491/j.issn.1001-9278.2021.02.020
• 综述 • 上一篇
收稿日期:
2020-07-19
出版日期:
2021-02-26
发布日期:
2021-02-22
WANG Conglong, ZHANG Yihui, WANG Xiangdong(), XU Haiyun
Received:
2020-07-19
Online:
2021-02-26
Published:
2021-02-22
Contact:
WANG Xiangdong
E-mail:wangxiangdong@th.btbu.edu.cn
摘要:
介绍了高性能聚合物泡沫聚醚砜(PES)和聚醚酰亚胺(PEI)的制备工艺;综述了制备工艺、加工条件、纳米填料、共混等对于泡孔结构与泡沫性能的影响;并列举了PES和PEI泡沫的应用和发泡行为的异同。
中图分类号:
王从龙, 张一辉, 王向东, 徐海云. 热塑性聚醚砜、聚醚酰亚胺泡沫材料的制备与研究现状[J]. 中国塑料, 2021, 35(2): 132-142.
WANG Conglong, ZHANG Yihui, WANG Xiangdong, XU Haiyun. Current Statue in Preparation and Research of Thermoplastic Polyether Sulfone and Polyetherimide Foam[J]. China Plastics, 2021, 35(2): 132-142.
1 | 王贵宾, 姜振华, 于 闯, 等. 特种工程塑料PES、PEEK的成型加工特性[J]. 化工科技, 2001, 9(2):44⁃48. |
WANG G B, JIANG Z H, YU C, et al. Moulding Processing Characteristic of Super Engineering Plastics(Pes and Peek)[J]. Science & Technology in Chemical Industry, 2001, 9(2):44⁃48. | |
2 | KRAUSE B, METTINKHOF R, VEGT N F AVAN DER, et al. Microcellular Foaming of Amorphous High⁃TgPolymers Using Carbon Dioxide[J]. Macromolecules, 2001, 34(4):874⁃884. |
3 | SORRENTINO L, AURILIA M, IANNACE S. Polymeric Foams from High⁃Performance Thermoplastics[J]. Advances in Polymer Technology, 2011, 30(3):234⁃243. |
4 | OWUSU⁃NKWANTABISAH S, STAUDT C, LESSER A J. Synergy of Supercritical CO2 and Superheated H2O for Enhanced Processability of Polyethersulfone towards Open Cell Foams[J]. Polymer Engineering & Science, 2018, 58(7):1 108⁃1 114. |
5 | AGHILI A, KAMRANI M R. Preparation of Polyethersulfone / Graphene Oxide Microcellular Foam Using Supercritical CO2, 2017[C]. IEEE, 2017. |
6 | SORRENTINO L, AURILIA M, CAFIERO L, et al. Nanocomposite Foams from High⁃Performance Thermoplastics[J]. Journal of Applied Polymer Science, 2011, 122(6):3 701⁃3 710. |
7 | CAFIERO L, SORRENTINO L, IANNACE S. Improving the Cellular Morphology in High Performance Thermoplastics Foams through Blending[C]//Ischia, Italy. AIP Publishing LLC, 2014: 465⁃468. |
8 | SORRENTINO L, CAFIERO L, IANNACE S. Control of Micro⁃ and Nanocellular Structures in CO2foamed PES/PEN Blends[J]. Polymer Engineering & Science, 2015, 55(6):1 281⁃1 289. |
9 | SORRENTINO L, CAFIERO L, IANNACE S. Foams from High Performance Thermoplastic PEN/PES Blends with Expanded Graphite[C]//Nuremberg, Germany. American Institute of Physics, 2014. |
10 | MA Z L, ZHANG G C, SHI X T, et al. Microcellular Foaming of Poly(phenylene sulfide)/Poly(ether sulfones) Blends Using Supercritical Carbon Dioxide[J]. Journal of Applied Polymer Science, 2015, 132(40): 42 634. |
11 | SUNDARRAM S S. Fabrication and Characterization of Open Celled Micro and Nano Foams[D]. The University of Texas at Austin, 2013. |
12 | VANDEN BOSCHE K, MOSLEH Y, DEPREITERE B, et al. Anisotropic Polyethersulfone Foam for Bicycle Helmet Liners to Reduce Rotational Acceleration during Oblique Impact[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2017, 231(9):851⁃861. |
13 | MOGHADAS B K, AZADI M. Fabrication of Nanocomposite Foam by Supercritical CO2 Technique for Application in Tissue Engineering[J]. Journal of Tissues and Materials, 2019,1(2):23⁃32. |
14 | MILLER D, CHATCHAISUCHA P, KUMAR V. Microcellular and Nanocellular Solid⁃State Polyetherimide (PEI) Foams Using Sub⁃Critical Carbon Dioxide I. Processing and Structure[J]. Polymer, 2009, 50(23):5 576⁃5 584. |
15 | AHER B, OLSON N M, KUMAR V. Production of Bulk Solid⁃State PEI Nanofoams Using Supercritical CO2[J]. Journal of Materials Research, 2013, 28(17):2 366⁃2 373. |
16 | CAFIERO L, IANNACE S, SORRENTINO L. Microcellular Foams from High Performance Miscible Blends Based on PEEK and PEI[J]. European Polymer Journal, 2016, 78:116⁃128. |
17 | ABBASI H, ANTUNES M, VELASCO J I. Graphene Nanoplatelets⁃Reinforced Polyetherimide Foams Prepared by Water Vapor⁃Induced Phase Separation[J]. Express Polymer Letters, 2015, 9(5):412⁃423. |
18 | LING J Q, ZHAI W T, FENG W W, et al. Facile Preparation of Lightweight Microcellular Polyetherimide/Graphene Composite Foams for Electromagnetic Interference Shielding[J]. ACS Applied Materials & Interfaces, 2013, 5(7):2 677⁃2 684. |
19 | SUN X J, ZHAO X W, YE L. Construction of Gradient Structure in Polyetherimide/Carbon Nanotube Nanocomposite Foam and Its Thermal/Mechanical Property[J]. Composites Part A: Applied Science and Manufacturing, 2019, 126:105579. |
20 | LIU T, LEI Y J, CHEN Z L, et al. Effects of Processing Conditions on Foaming Behaviors of Polyetherimide (PEI) and PEI/Polypropylene Blends in Microcellular Injection Molding Process[J]. Journal of Applied Polymer Science, 2015, 132(7): 41 443. |
21 | MILLER D, KUMAR V. Microcellular and Nanocellular Solid⁃State Polyetherimide (PEI) Foams Using Sub⁃Critical Carbon Dioxide II. Tensile and Impact Properties[J]. Polymer, 2011, 52(13):2 910⁃2 919. |
22 | SUNDARRAM S S, LI W. On Thermal Conductivity of Micro⁃ and Nanocellular Polymer Foams[J]. Polymer Engineering & Science, 2013, 53(9):1 901⁃1 909. |
23 | FENG D, LI L, WANG Q. Fabrication of Three⁃Dimensional Polyetherimide Bead Foams via Supercritical CO2/Ethanol Co⁃Foaming Technology[J]. RSC Advances, 2019, 9(7):4 072⁃4 081. |
24 | FENG D, LIU P J, LI L. Fabrication and Cell Morphology of a Microcellular Poly(ether imide)⁃Carbon Nanotube Composite Foam with a Three⁃Dimensional Shape[J]. Journal of Applied Polymer Science, 2019, 136(21):47 501. |
25 | LI J L, CHEN Z L, WANG X Z, et al. Cell Morphology and Mechanical Properties of Microcellular Mucell®injection Molded Polyetherimide and Polyetherimide/Fillers Composite Foams[J]. Journal of Applied Polymer Science, 2013, 130(6):4 171⁃4 181. |
26 | YU H T, LEI Y J, YU X J, et al. Batch Foaming of Carboxylated Multiwalled Carbon Nanotube/Poly(ether imide) Nanocomposites: The Influence of the Carbon Nanotube Aspect Ratio on the Cellular Morphology[J]. Journal of Applied Polymer Science, 2015, 132(30): 42 325. |
27 | KAUSAR A, SIDDIQ M. Poly(Ether⁃Imide)/Polyurethane Foams Reinforced with Graphene Nanoplatelet: Microstructure, Thermal Stability, and Flame Resistance[J]. International Journal of Polymer Analysis and Characterization, 2016, 21(5):436⁃446. |
28 | ABBASI H, ANTUNES M, VELASCO J I. Enhancing the Electrical Conductivity of Polyetherimide⁃Based Foams by Simultaneously Increasing the Porosity and Gra⁃phene Nanoplatelets Dispersion [J]. Polymer Compo⁃sites,2019,40(S2):E1416⁃E1425.DOI: 10.1002/pc.25 029. |
29 | ABBASI H, ANTUNES M, VELASCO J. Effects of Carbon Nanotubes/Graphene Nanoplatelets Hybrid Systems on the Structure and Properties of Polyetherimide⁃Based Foams[J]. Polymers, 2018, 10(4):348. |
30 | SUN X J, YE L. Microcellular Polyetherimide/Graphene⁃Polysiloxane Composite Foam: Intercalation Structure, Mechanical and Thermal Properties[J]. Polymer International, 2018, 67(12):1 655⁃1 663. |
31 | SUN X J, YE L, ZHAO X W. Microcellular Polyetherimide/Carbon Nanotube Composite Foam: Structure, Property and Highly Reinforcing Mechanism[J]. European Polymer Journal, 2019, 116:488⁃496. |
32 | DASTAKEER S, SAMINATHAN P, VENKATESAN S, et al. Studies on Thermal Degradation Kinetics and Dielectric Properties of Polyether Imide Foam/Nanosilica⁃Based Nanocomposites[J]. Plastics, Rubber and Composites, 2019, 48(8):356⁃363. |
33 | LIU T, ZHOU S Y, LEI Y J, et al. Morphology and Properties of Injection Molded Microcellular Poly(ether imide) (PEI)/Polypropylene (PP) Foams[J]. Industrial & Engineering Chemistry Research, 2014, 53(51):19 934⁃19 942. |
34 | LIU T, CHEN Z L, LEI Y J, et al. Foaming Behaviors of Polyetherimide/ Polypropylene⁃Graft⁃Maleic Anhydride Blends in the Microcellular Injection Molding Process[J]. Journal of Cellular Plastics, 2015, 51(4):387⁃400. |
35 | CAFIERO L, IANNACE S, SORRENTINO L. Microcellular Foams from PEEK/PEI Miscible Blends: Polymer Processing Society[C]. AIP Conference Proceeding,1779,2015:09 009. |
36 | NEMOTO T, TAKAGI J, OHSHIMA M. Nanocellular Foams⁃Cell Structure Difference between Immiscible and Miscible PEEK/PEI Polymer Blends[J]. Polymer Engineering & Science, 2010, 50(12):2 408⁃2 416. |
37 | LEI Y J, LIU T, CHEN Z L, et al. Morphology, Mechanical and Dielectric Properties, and Rheological Behavior of EAGMA Toughened Microcellular PEI–EAGMA Foam[J]. RSC Adv, 2014, 4(37):19 103⁃19 110. |
38 | ABBASI H, ANTUNES M, VELASCO J I. Influence of Polyamide–Imide Concentration on the Cellular Structure and Thermo⁃Mechanical Properties of Polyetherimide/Polyamide–Imide Blend Foams[J]. European Polymer Journal, 2015, 69:273⁃283. |
39 | SHEN B, ZHAI W T, TAO M M, et al. Lightweight, Multifunctional Polyetherimide/graphene@Fe3O4 Composite Foams for Shielding of Electromagnetic Pollution[J]. ACS Applied Materials & Interfaces, 2013, 5(21):11 383⁃11 391. |
40 | FENG D, LIU P J, WANG Q. Exploiting the Piezoresistivity and EMI Shielding of Polyetherimide/Carbon Nanotube Foams by Tailoring Their Porous Morphology and Segregated CNT Networks[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124:105 463. |
41 | ABBASI H, ANTUNES M, VELASCO J. Polyetherimide Foams Filled with Low Content of Graphene Nanoplatelets Prepared by scCO2 Dissolution[J]. Polymers, 2019, 11(2):328. |
42 | ESTRAVIS S, WINDLE A H, VAN ES M, et al. Thermodynamic Limits on Cell Size in the Production of Stable Polymeric Nanocellular Materials[J]. Polymer, 2020, 186:122 036. |
[1] | 冯凯, 李永青, 马秀清, 韩颖. 聚甲醛增韧改性的研究进展及应用[J]. 中国塑料, 2022, 36(7): 157-164. |
[2] | 冯冰涛, 王晓珂, 张信, 孙国华, 汪殿龙, 侯连龙, 马劲松. 连续碳纤维增强热塑性复合材料制备与应用研究进展[J]. 中国塑料, 2022, 36(7): 165-173. |
[3] | 杨小龙, 陈文静, 李永青, 闫晓堃, 王修磊, 谢鹏程, 马秀清. 导电型聚合物/石墨烯复合材料的研究进展[J]. 中国塑料, 2022, 36(6): 165-173. |
[4] | 魏茂强. 农用塑料薄膜的发展与探讨[J]. 中国塑料, 2022, 36(6): 92-99. |
[5] | 董露茜, 徐芳, 翁云宣. 聚乙醇酸改性及其应用研究进展[J]. 中国塑料, 2022, 36(4): 166-174. |
[6] | 王富玉, 郭金强, 张玉霞. 聚合物原位成纤方法及其在PP共混体系中的应用[J]. 中国塑料, 2022, 36(3): 146-156. |
[7] | 黎玉山, 李杰. PDMS耐久性超疏水表面的研究进展[J]. 中国塑料, 2022, 36(3): 167-176. |
[8] | 程曼芳, 白继峰, 王文清, 雷良才, 李海英, 韩向艳, 胡跃鑫. 基于超支化聚对氯甲基苯乙烯聚合离子液体共混体系的制备与表征[J]. 中国塑料, 2022, 36(3): 40-47. |
[9] | 王非, 刘丽超, 薛平. 熔纺PE⁃UHMW/PE⁃HD共混纤维的力学性能和晶体结构研究[J]. 中国塑料, 2022, 36(1): 47-52. |
[10] | 刁晓倩, 翁云宣, 付烨, 周迎鑫. 生物降解塑料应用及性能评价方法综述[J]. 中国塑料, 2021, 35(8): 152-161. |
[11] | 张婷, 张彩丽, 宋鑫宇, 翁云宣. PBAT薄膜的制备及应用研究进展[J]. 中国塑料, 2021, 35(7): 115-125. |
[12] | 张耀成, 吴勇振, 李阳, 赵竹, 王国胜, 丁雪佳. 双季铵盐改性医用PVC抗菌材料[J]. 中国塑料, 2021, 35(7): 53-57. |
[13] | 王从龙, 韩硕, 张一辉, 陈士宏, 王向东. 聚醚砜超临界CO2发泡行为研究[J]. 中国塑料, 2021, 35(6): 13-19. |
[14] | 张一辉, 陈士宏, 王从龙, 王向东. 聚醚酰亚胺均相成核发泡行为研究[J]. 中国塑料, 2021, 35(5): 65-71. |
[15] | 赵艳, 潘祥, 刘本刚. 可发性聚苯乙烯土工泡沫的性能及应用[J]. 中国塑料, 2021, 35(5): 97-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||