
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2023, Vol. 37 ›› Issue (11): 170-177.DOI: 10.19491/j.issn.1001-9278.2023.11.019
吕冲1(), 朱雯雯2, 史正雪1, 加英姿1, 江学良1, 游峰1(
), 黄李纲1, 姚楚1, 刘仿军1
收稿日期:
2023-05-23
出版日期:
2023-11-26
发布日期:
2023-11-22
通讯作者:
游峰(1985—),男,副教授,从事聚合物基复合材料研究,youfeng.mse@wit.edu.cn作者简介:
吕冲(1999—),男,在读研究生,从事高分子材料复合材料研究,571663427@qq.com
基金资助:
LYU Chong1(), ZHU Wenwen2, SHI Zhengxue1, JIA Yingzi1, JIANG Xueliang1, YOU Feng1(
), HUANG Ligang1, YAO Chu1, LIU Fangjun1
Received:
2023-05-23
Online:
2023-11-26
Published:
2023-11-22
Contact:
YOU Feng
E-mail:571663427@qq.com;youfeng.mse@wit.edu.cn
摘要:
从聚合物吸声材料和隔声材料两方面入手,简要介绍了多孔吸声材料、多层吸声材料、复合多孔吸声材料,单层隔声材料以及多层隔声材料的作用机理;基于现有材料性能的局限性,综述聚合物复合降噪材料的制备方法和提高降噪性能的途径;此外,结合文献介绍了层状复合降噪材料、环保型复合降噪材料和声学超材料的制备及声学特性研究进展,为今后降噪聚合物材料的研究提供了方向;最后,简要展望了高降噪复合材料的发展前景。
中图分类号:
吕冲, 朱雯雯, 史正雪, 加英姿, 江学良, 游峰, 黄李纲, 姚楚, 刘仿军. 高降噪聚合物基复合材料的制备及声学性能研究进展[J]. 中国塑料, 2023, 37(11): 170-177.
LYU Chong, ZHU Wenwen, SHI Zhengxue, JIA Yingzi, JIANG Xueliang, YOU Feng, HUANG Ligang, YAO Chu, LIU Fangjun. Research progress in preparation and acoustic properties of polymer composites with high noise reduction[J]. China Plastics, 2023, 37(11): 170-177.
1 | Gwon Jae Gyoung, Kim Seok Kyeong, Kim Jung Hyeun. Sound absorption behavior of flexible polyurethane foams with distinct cellular structures[J]. Materials & Design, 2016, 89: 448⁃454. |
2 | Kim Seok Kyeong, Giwook Sung, Gwon Jae Gyoung, et al. Controlled phase separation in flexible polyurethane foams with diethanolamine cross⁃linker for improved sound absorption efficiency[J]. International Journal of Precision Engineering and Manufacturing⁃Green Technology, 2016, 3(4): 367⁃373. |
3 | Lu Bing, Lv Lingxiao, Yang Hongsheng, et al. High performance broadband acoustic absorption and sound sensing of a bubbled graphene monolith[J]. Journal of Materials Chemistry A, 2019, 7(18): 11 423⁃11 429. |
4 | Jiang Xueliang, Wang Zhijie, Yang Zhen, et al. Structural design and sound absorption properties of nitrile butadiene rubber⁃polyurethane foam composites with stratified structure[J]. Polymers,2018, 10(9):946. |
5 | Carolina Simón⁃Herrero, Nieves Peco, Amaya Romero, et al. PVA/nanoclay/graphene oxide aerogels with enhanced sound absorption properties[J]. Applied Acoustics,2019, 156: 40⁃45. |
6 | Kim Ji Mun, Kim Do Hoon, Kim Jiwan, et al. Effect of graphene on the sound damping properties of flexible polyurethane foams[J]. Macromolecular Research,2017, 25(2): 190⁃196. |
7 | Van Hai Trinh, Vincent Langlois, Johann Guilleminot, et al. Tuning membrane content of sound absorbing cellular foams: Fabrication, experimental evidence and multiscale numerical simulations[J]. Materials & Design,2019, 162: 345⁃361. |
8 | Iwan Prasetiyo, Eki Muqowi, Azma Putra, et al. Modelling sound absorption of tunable double layer woven fabrics[J]. Applied Acoustics,2020, 157: 107008. |
9 | Katarzyna Kobiela⁃Mendrek, Marcin Bączek, Jan Broda, et al. Acoustic performance of sound absorbing materials produced from wool of local mountain sheep[J]. Materials,2022, 15(9): 3139. |
10 | Jan Broda, Marcin Bączek. Acoustic properties of multi⁃layer wool nonwoven structures[J]. Journal of Natural Fibers,2020, 17(11): 1 567⁃1 581. |
11 | 徐稳, 王知杰, 朱雯雯,等. 微穿孔板⁃聚合物层状结构材料的制备和吸声性能[J]. 材料研究学报,2021, 35(7): 535⁃542. |
XU W, WANG Z J, ZHU W W,et al. Preparation and sound absorption properties of MPP⁃polymers layered structure materials[J]. Chinese Journal of Materials Research,2021, 35(7): 535⁃542. | |
12 | Wang Zonghui, Huang Yixing, Zhang Xiaowei, et al. Broadband underwater sound absorbing structure with gradient cavity shaped polyurethane composite array supported by carbon fiber honeycomb[J]. Journal of Sound and Vibration,2020, 479: 115375. |
13 | Qi Lize, Zhi Chao, Meng Jiaguang, et al. Highly efficient acoustic absorber designed by backing cavity⁃like and filled⁃microperforated plate⁃like structure[J]. Materials & Design,2023, 225: 111484. |
14 | Jimenez N, Romero⁃Garcia V, Cebrecos A, et al. Broadband quasi perfect absorption using chirped multi⁃layer porous materials[J]. AIP Advaneces, 2016, 6(12):121605. |
15 | Cao Leitao, Si Yang, Wu Yuanyuan, et al. Ultralight, superelastic and bendable lashing⁃structured nanofibrous aerogels for effective sound absorption[J]. Nanoscale, 2019, 11(5): 2 289⁃2 298. |
16 | Cao Leitao, Shan Haoru, Zong Dingding, et al. Fire⁃resistant and hierarchically structured elastic ceramic nanofibrous aerogels for efficient low⁃frequency noise reduction[J]. Nano Letters, 2022, 22(4): 1 609⁃1 617. |
17 | Satoru Takeshita, Amin Sadeghpour, Deeptanshu Sivaraman, et al. Solvents, CO2 and biopolymers: structure formation in chitosan aerogel[J]. Carbohydrate Polymers, 2020, 247: 2 289⁃2 298. |
18 | Li Zengling, Chen Nan, Qu Liangti. Directly freeze⁃drying porous graphene aerogel as acoustic⁃absorbing material[J]. Journal of Physics: Conference Series, 2021, 2009: 012059. |
19 | Jiang Xueliang, Zhang Jun, You Feng, et al. Chitosan/clay aerogel: microstructural evolution, flame resistance and sound absorption[J]. Applied Clay Science, 2022, 228: 106624. |
20 | Shen Junshi, Hu Ruofei, Jiang Xueliang, et al. Enhanced toughness and sound absorption performance of bio⁃aerogel via incorporation of elastomer[J]. Polymers, 2022, 14(7): 1344. |
21 | Jung⁃Hwan Oh, Kim Jieun, Lee Hyeongrae, et al. Directionally antagonistic graphene oxide⁃polyurethane hybrid aerogel as a sound absorber[J]. ACS Applied Materials & Interfaces,2018, 10(26): 22 650⁃22 660. |
22 | Nine Md Julker, Md Ayub, Zander Anthony C, et al. Graphene oxide⁃based lamella network for enhanced sound absorption[J]. Advanced Functional Materials,2017, 27(46): 1703820. |
23 | Fei Yanpei, Fang Wei, Zhong Mingqiang, et al. Morphological structure, rheological behavior, mechanical properties and sound insulation performance of thermoplastic rubber composites reinforced by different inorganic fillers[J]. Polymers, 2018, 10(3): 276. |
24 | 夏立超, 吴宏, 郭少云. 低密度聚乙烯/蒙脱土复合材料的制备及隔声性能[J]. 高分子材料科学与工程[J]. 2016, 32(5): 119⁃123. |
XIA L C, WU H, GUO S Y. Preparation and sound insulation property of LDPE / OMMT composites[J]. Polymer Materials Science & Engineering[J]. 2016, 32(5): 119⁃123. | |
25 | Sabet Seyed Mohammad, Reza Keshavarz, Abdolreza Ohadi. Sound isolation properties of polycarbonate/clay and polycarbonate/silica nanocomposites[J]. Iranian Polymer Journal, 2018, 27(1): 57⁃66. |
26 | Kar Goutam Prasanna, Sourav Biswas, Suryasarathi Bose. Tailoring the interface of an immiscible polymer blend by a mutually miscible homopolymer grafted onto graphene oxide: outstanding mechanical properties[J]. Physical Chemistry Chemical Physics, 2015, 17(3): 1 811⁃1 821. |
27 | Yang Yong, Li Binbin, Chen Zhaofeng, et al. Sound insulation of multi⁃layer glass⁃fiber felts: Role of morphology[J]. Textile Research Journal, 2017, 87(3): 261⁃269. |
28 | Zhang Fengshun, Guo Molin, Xu Kangming, et al. Multilayered damping composites with damping layer/constraining layer prepared by a novel method[J]. Composites Science and Technology, 2014, 101: 167⁃172. |
29 | Xia Lichao, Wu Hong, Guo Shaoyun, et al. Enhanced sound insulation and mechanical properties of LDPE/mica composites through multilayered distribution and orientation of the mica[J]. Composites Part A: Applied Science and Manufacturing, 2016, 81: 225⁃233. |
30 | Fan Li, Chen Zhe, Zhang Shu⁃yi, et al. An acoustic metamaterial composed of multi⁃layer membrane⁃coated perforated plates for low⁃frequency sound insulation[J]. Applied Physics Letters,2015, 106(15):151908. |
31 | Xue Bai, Xie Lan, Bao Yue, et al. Multilayered epoxy/glass fiber felt composites with excellently acoustical and thermal insulation properties[J]. Journal of Applied Polymer Science, 2019, 136(3): 46935. |
32 | Lihua Lyu, Lu Jing, Guo Jing, et al. Sound absorption properties of multi⁃layer structural composite materials based on waste corn husk fibers[J]. Journal of Engineered Fibers and Fabrics, 2020, 15:1⁃8. |
33 | Jin Yeqing, Zhu Xuekang, Pang Fuzhen, et al. Application study on noise reduction of multi⁃storey composite structure cabin[C]//Proceedings of the 2018 IEEE 8th International Conference on Underwater System Technology: Theory and Applications, Wuhan, China: IEEE,2018:1⁃5. |
34 | 霍又嘉, 朱雯雯, 潘博坤,等.软硬层状聚氯乙烯复合结构材料的制备和声学性能[J]. 高分子材料科学与工程,2021, 37(3): 123⁃128,134. |
HUO Y J, ZHU W W, PAN B K,et al. Preparation and acoustic properties of poly(vinyl chloride)soft⁃hard layered structural composites[J]. Polymer Materials Science & Engineering,2021, 37(3): 123⁃128,134. | |
35 | Marco Caniato, Luca Cozzarini, Chiara Schmid, et al. Acoustic and thermal characterization of a novel sustainable material incorporating recycled microplastic waste[J]. Sustainable Materials and Technologies, 2021, 28: e00274. |
36 | Domenico Curto, Andrea Guercio, Vincenzo Franzitta. Investigation on a bio⁃composite material as acoustic absorber and thermal insulation[J]. Energies,2020, 13(14): 3699. |
37 | Rubén Maderuelo⁃Sanz, García⁃Cobos Francisco José, Sánchez⁃Delgado Francisco José, et al. Mechanical, thermal and acoustical evaluation of biocomposites made of agricultural waste for ceiling tiles[J]. Applied Acoustics,2022, 191: 108689. |
38 | Ali M, Almuzaiqer R, Al⁃Salem K, et al. New novel thermal insulation and sound⁃absorbing materials from discarded facemasks of COVID-19 pandemic[J]. Scientific Reports, 2021, 11(1): 23240. |
39 | Zhai Shi⁃Long, Wang Yuan⁃Bo, Zhao Xiao⁃Peng. A kind of tunable acoustic metamaterial for low frequency absorption[J]. Wuli Xuebao/Acta Physica Sinica, 2019, 68(3):108586. |
40 | Man Xianfeng, Luo Zhen, Liu Jian, et al. Hilbert fractal acoustic metamaterials with negative mass density and bulk modulus on subwavelength scale[J]. Materials & Design, 2019, 180: 107911. |
41 | Ma Fuyin, Wang Chang, Du Yang, et al. Enhancing of broadband sound absorption through soft matter[J]. Materials Horizons, 2022, 9(2): 653⁃662. |
42 | Yin Xiaokai, Xu Yongchao, Cui Hongyu. Research on low frequency sound insulation properties of membrane⁃type acoustic metamaterials[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1 210(1): 012001. |
43 | Jun⁃Young Jang, Choon⁃Su Park, Song Kyungjun. Lightweight soundproofing membrane acoustic metamaterial for broadband sound insulation[J]. Mechanical Systems and Signal Processing,2022, 178: 109270. |
44 | Xie Suchao, Li Zhen, Yan Hongyu, et al. Ultra⁃broadband sound absorption performance of a multi⁃cavity composite structure filled with polyurethane[J]. Applied Acoustics, 2022, 189: 108612. |
[1] | 任国振, 王蒙蒙, 黄建建, 晋刚. 体积拉伸流场下PEEK/TLCP共混物的制备及性能研究[J]. 中国塑料, 2023, 37(8): 1-7. |
[2] | 张伟程, 胡祥, 罗鸿兴, 金卉, 游峰, 江学良, 姚楚. 中空玻璃微珠填充聚氨酯发泡材料的吸声性能与动态力学性能研究[J]. 中国塑料, 2023, 37(1): 38-45. |
[3] | 高永红, 陈凌峰, 金清平. 冻融环境下GFRP管混凝土柱轴压性能试验研究[J]. 中国塑料, 2023, 37(1): 74-81. |
[4] | 高永红, 彭梦蜜, 金清平. 温度对玻璃纤维增强聚合物筋与混凝土黏结性能影响试验研究[J]. 中国塑料, 2022, 36(9): 16-23. |
[5] | 杨超永, 郭金强, 王富玉, 张玉霞. 高性能塑料薄膜制备方法及改性研究进展[J]. 中国塑料, 2022, 36(9): 167-179. |
[6] | 焦志伟, 王克琛, 张杨, 杨卫民. 基于碳纳米涂层沉积滑石粉与炭黑协同填充PVC/ABS复合材料的性能研究[J]. 中国塑料, 2022, 36(8): 10-15. |
[7] | 杨岩, 王杰, 李宗育, 王懿明, 王运楠, 黎水娟, 雷良才, 李海英. 超支化离子液体聚合物合成方法综述[J]. 中国塑料, 2022, 36(8): 159-165. |
[8] | 杨小龙, 陈文静, 李永青, 闫晓堃, 王修磊, 谢鹏程, 马秀清. 导电型聚合物/石墨烯复合材料的研究进展[J]. 中国塑料, 2022, 36(6): 165-173. |
[9] | 孙旗, 高兴, 崔雪梅, 连慧琴, 崔秀国, 汪晓东. 黑磷烯纳米阻燃剂研究进展[J]. 中国塑料, 2022, 36(5): 133-139. |
[10] | 田驰锋, 张洪申. 基于翅片式摩擦桶的车用聚合物粒子荷电及静电分离探索[J]. 中国塑料, 2022, 36(5): 75-80. |
[11] | 宋立健, 张有忱, 左夏华, 张政和, 安瑛, 杨卫民, 谭晶, 程礼盛. 自组装单分子层调控界面热输运的研究进展[J]. 中国塑料, 2022, 36(4): 60-69. |
[12] | 程曼芳, 白继峰, 王文清, 雷良才, 李海英, 韩向艳, 胡跃鑫. 基于超支化聚对氯甲基苯乙烯聚合离子液体共混体系的制备与表征[J]. 中国塑料, 2022, 36(3): 40-47. |
[13] | 张庭, 金清平, 宋仕娥, 曹南南, 邓思远. 不同腐蚀环境下FRP筋耐久性与寿命预测研究进展[J]. 中国塑料, 2022, 36(3): 75-81. |
[14] | 郝春波, 刘万胜, 赵欣麟, 王岩, 王月. 本体ABS用橡胶国产化替代分析及评价[J]. 中国塑料, 2022, 36(3): 89-95. |
[15] | 张瑞, 姚佳斌, 李轩, 何雪莲. 双向可逆形状记忆乙烯⁃醋酸乙烯酯共聚物的制备和性能研究[J]. 中国塑料, 2022, 36(12): 6-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||