
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (8): 132-140.DOI: 10.19491/j.issn.1001-9278.2024.08.021
• 综述 • 上一篇
收稿日期:
2024-03-20
出版日期:
2024-08-26
发布日期:
2024-08-19
通讯作者:
潘亚敏(1990—),女,副教授,从事高分子材料加工及功能化等研究,yamin.pan@zzu.edu.cn
DONG Guang1, HOU Yangzhe2, YUAN Hongyue3, LIU Xianhu2, PAN Yamin2()
Received:
2024-03-20
Online:
2024-08-26
Published:
2024-08-19
Contact:
PAN Yamin
E-mail:yamin.pan@zzu.edu.cn
摘要:
综述了多孔聚乳酸(PLA)材料在制备工艺、孔结构调控和性能优化等方面的研究进展。介绍了多孔PLA材料的典型制备工艺,包括模板法、非溶剂诱导相分离法、冷冻干燥法和超临界CO2发泡法。同时,介绍了不同孔结构以及孔尺寸和密度的变化对性能的影响。此外,重点介绍了立构复合晶(SC)对多孔PLA材料孔结构和宏观性能的影响。
中图分类号:
董光, 侯仰喆, 袁洪跃, 刘宪虎, 潘亚敏. 多孔聚乳酸材料的制备及结构性能优化进展[J]. 中国塑料, 2024, 38(8): 132-140.
DONG Guang, HOU Yangzhe, YUAN Hongyue, LIU Xianhu, PAN Yamin. Progress in porous poly(lactic acid) material and their structure and performance optimization[J]. China Plastics, 2024, 38(8): 132-140.
1 | 宋丹阳, 郑红娟, 李一龙. 聚乳酸基油水分离材料研究进展[J]. 中国塑料, 2022, 36(9): 187⁃192. |
SONG D Y, ZHENG H J, LI Y L. Research progress in PLA⁃based oil⁃water separation materials[J]. China Plastics, 2022, 36(9): 187⁃192. | |
2 | 李亮, 裴斐斐, 刘淑萍, 等. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11): 1⁃8. |
LI L, PEI F F, LIU S P,et al. Preparation and characterization of polylactic acid nanofiber drug loaded medical dressings[J]. Journal of Textile Research, 2022, 43(11): 1⁃8. | |
3 | 景占鑫, 匡倩, 李广瑞, 等. 立构复合调控聚乳酸基材料性能及其应用研究进展[J]. 工程塑料应用, 2023, 51(12): 156⁃164. |
JING Z X, KUANG Q, LI G R, et al. Research progress on the properties and applications of poly(lactide)⁃based materials adjusted by stereocomplexation[J]. Engineering Plastics Application, 2023, 51(12):156⁃164. | |
4 | Ikada Y, Jamshidi K, Tsuji H, et al. Stereocomplex formation between enantiomeric poly(lactides)[J]. Macromolecules,1987, 20(4): 904⁃906. |
5 | 苏晓龙, 李浩峰, 杨欣, 等. 立构复合聚乳酸材料研究进展[J]. 化工新型材料, 2023, 51(2): 42⁃45. |
SU X L, LI H F, YANG X, et al. Advances in research on stereocomplex⁃polylactic materials[J]. New Chenmical Materials, 2023, 51(2):42⁃45. | |
6 | 李森, 徐思遥. 多孔聚合物树脂用于吸附处理VOCs废气的研究[J]. 化学反应工程与工艺, 2023, 39(5): 430⁃438. |
LI S, XU S Y. Study of porous polymer resin used in adsorption treatment of VOCs exhaust gas[J] Chemical Reaction Engineering and Technology, 2023, 39(5):430⁃438. | |
7 | 鲍沂沂, 贾少晋, 李记伟, 等. 双连续相微乳液制备多孔聚合物与表征[J]. 高分子材料科学与工程, 2018, 34(9): 1⁃4. |
BAO Y Y, JIA S J, LI J W, et al. Characterization and preparation of porous polymeric materials by bicontinuous microemulsion polymerization[J] Polymer Materials Science and Engineering, 2018, 34(9):1⁃4. | |
8 | Yuan H, Pan Y, Wang X, et al. Simple water tunable polyurethane microsphere for super⁃hydrophobic dip⁃coating and oil⁃water separation[J]. Polymer, 2020, 204: 122833. |
9 | 尹浩月, 邓久鹏, 马丽娟, 等. 冷冻干燥法制备聚乳酸多孔支架[J]. 生物医学工程研究, 2019, 38(2): 215⁃218, 246. |
YIN H Y, DENG J P, MA L J, et al. Preparation of polylactic acid porous scaffolds by freeze⁃drying method[J]. Journal of Biomedical Engineering Research, 2019, 38(2):215⁃218, 246. | |
10 | Peng K, Mubarak S, Diao X, et al. Progress in the preparation, properties, and applications of PLA and its composite microporous materials by supercritical CO2: a review from 2020 to 2022[J]. Polymers, 2022, 14(20): 4320. |
11 | Garcia J U, Iwama T, Chan E Y, et al. Mechanisms of asymmetric membrane formation in nonsolvent⁃induced phase separation[J]. ACS Macro Letters, 2020, 9(11): 1 617⁃1 624. |
12 | Zhang L Q, Yang S G, Li Y, et al. Polylactide porous biocomposites with high heat resistance by utilizing cellulose template⁃directed construction[J]. Cellulose, 2020, 27(7): 3 805⁃3 819. |
13 | Kim J W, Taki K, Nagamine S, et al. Preparation of poly(L⁃lactic acid) honeycomb monolith structure by unidirectional freezing and freeze⁃drying[J]. Chemical Engineering Science, 2008, 63(15): 3 858⁃3 863. |
14 | Chen Y, Yang W, Hu Z, et al. Preparation and properties of oriented microcellular Poly(l⁃lactic acid) foaming material[J]. International Journal of Biological Macromolecules, 2022, 211: 460⁃469. |
15 | Yan Z, Liao X, He G, et al. Green and high⁃expansion PLLA/PDLA foams with excellent thermal insulation and enhanced compressive properties[J]. Industrial & Engineering Chemistry Research, 2020, 59(43): 19 244⁃19 251. |
16 | Yan Z, Liao X, He G, et al. Green method to widen the foaming processing window of PLA by introducing stereocomplex crystallites[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21 466⁃21 475. |
17 | Khalil H, Hegab H M, Nassar L, et al. Asymmetrical ultrafiltration membranes based on polylactic acid for the removal of organic substances from wastewater[J]. Journal of Water Process Engineering, 2022, 45: 102510. |
18 | Wang X, Pan Y, Liu X, et al. Facile fabrication of superhydrophobic and eco⁃friendly poly(lactic acid) foam for oil⁃water separation via skin peeling[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14 362⁃14 367. |
19 | Liu X, Zhang M, Hou Y, et al. Hierarchically superhydrophobic stereo‐complex poly (lactic acid) aerogel for daytime radiative cooling[J]. Advanced Functional Materials, 2022, 32(46): 2207414. |
20 | Yan T, Ye X, He E, et al. GR⁃Fe3O4/PLA 3D printing composite materials with excellent microwave absorption properties[J]. Journal of Alloys and Compounds, 2024, 972: 172799. |
21 | 陈博, 官成兰, 陈学琴, 等. 聚合物多孔材料的制备及性能研究[J]. 湖北大学学报(自然科学版), 2017, 39(5): 496⁃499. |
CHEN B, GUAN L C, CHEN X Q, et al. Preparation and properties of polymer porous materials[J]. Journal of Hubei University (Nature Science), 2017, 39(5):496⁃499. | |
22 | Zhang X, Wang X, Liu X, et al. Porous polyethylene bundles with enhanced hydrophobicity and pumping oil⁃recovery ability via skin⁃peeling[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12 580⁃12 585. |
23 | Mosanenzadeh S G, Naguib H E, Park C B, et al. Development of polylactide open‐cell foams with bimodal structure for high‐acoustic absorption[J]. Journal of Applied Polymer Science, 2014, 131(7): 39518. |
24 | Xue Z, Sun Z, Cao Y, et al. Superoleophilic and superhydrophobic biodegradable material with porous structures for oil absorption and oil⁃water separation[J]. RSC Advances, 2013, 3(45): 23432. |
25 | Kramschuster A, Turng L S. An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds[J]. Journal of Biomedical Materials Research Part B⁃Applied Biomaterials, 2010, 92B(2): 366⁃376. |
26 | Hung W L, Wang D M, Lai J Y, et al. On the initiation of macrovoids in polymeric membranes⁃effect of polymer chain entanglement[J]. Journal of Membrane Science, 2016, 505: 70⁃81. |
27 | Sadrzadeh M, Bhattacharjee S. Rational design of phase inversion membranes by tailoring thermodynamics and kinetics of casting solution using polymer additives[J]. Journal of Membrane Science, 2013, 441: 31⁃44. |
28 | Pervin R, Ghosh P, Basavaraj M G. Influence of initial composition of casting solution on morphology of porous thin polymer films produced via phase separation[J]. Journal of Polymer Research, 2022, 29(11): 486. |
29 | Rezabeigi E, Wood⁃Adams P M, Drew R A L. Production of porous polylactic acid monoliths via nonsolvent induced phase separation[J]. Polymer, 2014, 55(26): 6 743⁃6 753. |
30 | Rezabeigi E, Drew R A L, Wood⁃Adams P M. Highly porous polymer structures fabricated via rapid precipitation from ternary systems[J]. Industrial & Engineering Chemistry Research, 2017, 56(40): 11 451⁃11 459. |
31 | Liu H, Zhai W, Park C B. Biomimetic hydrophobic plastic foams with aligned channels for rapid oil absorption[J]. Journal of Hazardous Materials, 2022, 437: 129346. |
32 | Kim J F, Kim J H, Lee Y M, et al. Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review[J]. AIChE Journal, 2016, 62(2): 461⁃490. |
33 | Hou Y, Jia H, Pan Y, et al. Porous poly(L⁃lactide)/poly(D⁃lactide) blend film with enhanced flexibility and heat resistance via constructing a regularly oriented pore structure[J]. Macromolecules, 2023, 56(18): 7 606⁃7 616. |
34 | Önder Ö C, Yilgör E, Yilgör I. Fabrication of rigid poly(lactic acid) foams via thermally induced phase separation[J]. Polymer, 2016, 107: 240⁃248. |
35 | 阿拉腾沙嘎, 郭凯月. 冷冻干燥法制备气凝胶材料研究进展[J]. 中国陶瓷, 2022, 58(6): 17⁃25. |
ALATENG S G, GUO K Y. Research progress on preparation of aerogel materials by freeze⁃drying method[J]. China Ceramics, 2022, 58(6):17⁃25. | |
36 | 马珊珊, 张美云, 杨斌, 等. 冷冻干燥法制备纤维素基多孔材料的研究[J]. 中国造纸, 2017, 36(11): 29⁃36. |
MA S S, ZHANG M Y, YANG B, et al. Study on the preparation of cellulose⁃based porous material by freeze⁃drying process[J]. China Pulp & Paper, 2017, 36(11):29⁃36. | |
37 | 张晓敏, 张力, 贺雪英, 等. 冷冻干燥法制备聚合物基新型材料及其应用[J]. 化学进展, 2014, 26(11): 1 832⁃1 839. |
ZHANG X M, ZHANG L, HE X Y, et al. Fabrication and application of new polymer⁃based materials by freeze⁃drying[J]. Progress in Chemistry, 2014, 26(11):1 832⁃1 839. | |
38 | Hou Y, Pan Y, Zhou Z, et al. Review on cell structure regulation and performances improvement of porous poly(lactic acid)[J]. Macromolecular Rapid Communications, 2023, 44(10): 2300065. |
39 | 杨浩青, 王燕, 孙颖, 等. 超临界二氧化碳微孔发泡制备PEBA泡沫及其结构和性能[J]. 工程塑料应用, 2023, 51(6): 46⁃53. |
YANG H Q, WANG Y, SUN Y, et al. Structure and properties of PEBA foam prepared by supercritical CO2 microporous foaming[J]. Engineering Plastics Application, 2023, 51(6):46⁃53. | |
40 | 宫政, 李为杰, 赵玲, 等. 等规聚丁烯-1扩链改性及其超临界CO2发泡行为研究[J]. 中国塑料, 2023, 37(12): 1⁃6. |
GONG Z, LI W J. ZHAO L,et al. Chain⁃extended modification of isotactic polybutene-1 and its supercritical CO2 foaming behavior[J]. China Plastics, 2023, 37(12):1⁃6. | |
41 | Ren Q, Wu M, Li W, et al. A green fabrication method of poly (lactic acid) perforated membrane via tuned crystallization and gas diffusion process[J]. International Journal of Biological Macromolecules, 2021, 182: 1 037⁃1 046. |
42 | Gong P, Zhai S, Lee R, et al. Environmentally friendly polylactic acid⁃based thermal insulation foams blown with supercritical CO2 [J]. Industrial & Engineering Chemistry Research, 2018, 57(15): 5 464⁃5 471. |
43 | 孙乙博, 刘亚宁, 芦浩凡, 等. PA66扩链改性及其超临界CO2微孔发泡行为研究[J]. 中国塑料, 2023, 37(12): 41⁃46. |
SUN Y B, LIU Y N, LU H F, et al. Study on chain⁃extending reaction of PA66 and its supercritical CO2 microcellular foaming behavior[J]. China Plastics, 2023, 37(12): 41⁃46. | |
44 | 侯运优, 张婕. 3D打印弹性蜂窝结构的实验和数值模拟研究[J]. 机械强度, 2023, 45(5): 1 259⁃1 264. |
HOU Y Y, ZHANG J. Experimental and numerical simulation of elastic honeycomb structures by 3D printing[J]. Journal of Mechanical Strength, 2023, 45(5): 1 259⁃1 264. | |
45 | Bhardwaj N, Kundu S C. Electrospinning: A fascinating fiber fabrication technique[J]. Biotechnology Advances, 2010, 28(3): 325⁃347. |
46 | Zhang L, Narita C, Himeda Y, et al. Development of highly oil⁃absorbent polylactic⁃acid microfibers with a nanoporous structure via simple one⁃step centrifugal spinning[J]. Separation and Purification Technology, 2022, 282: 120156. |
47 | Yin J, Xu L, Ahmed A. Batch preparation and characterization of electrospun porous polylactic acid⁃based nanofiber membranes for antibacterial wound dressing[J]. Advanced Fiber Materials, 2022, 4(4): 832⁃844. |
48 | Svatík J, Lepcio P, Ondreáš F, et al. PLA toughening via bamboo⁃inspired 3D printed structural design[J]. Polymer Testing, 2021, 104: 107405. |
49 | Takayama I, Kondo N, Kalies S, et al. Myoblast adhesion and proliferation on biodegradable polymer films with femtosecond laser⁃fabricated micro through⁃holes[J]. Journal of Biophotonics, 2020, 13(7): e202000037. |
50 | Oyama T G, Hinata T, Nagasawa N, et al. Micro/nanofabrication of poly(L⁃lactic acid) using focused ion beam direct etching[J]. Applied Physics Letters, 2013, 103(16): 163105. |
51 | Sun X, Guo Y, Wang R, et al. Flexure⁃resistant and additive⁃free poly (L⁃lactic acid) hydrophobic membranes fabricated by slow phase separation[J]. International Journal of Biological Macromolecules, 2022, 209: 1 605⁃1 612. |
52 | Sun X, Xue B, Yang S, et al. Controllable surficial and internal hierarchical structures of porous poly (L⁃lactic acid) membranes for hydrophobicity and potential application in oil⁃water separation[J]. Surfaces and Interfaces, 2021, 24: 101147. |
53 | Wang X, Pan Y, Yuan H, et al. Simple fabrication of superhydrophobic PLA with honeycomb⁃like structures for high⁃efficiency oil⁃water separation[J]. Chinese Chemical Letters, 2020, 31(2): 365⁃368. |
54 | Ko Y G. Formation of oriented fishbone⁃like pores in biodegradable polymer scaffolds using directional phase⁃separation processing[J]. Scientific Reports, 2020, 10(1): 14472. |
55 | Chang Y, Liu X, Yang H, et al. Nonsolvent⁃assisted fabrication of multi⁃scaled polylactide as superhydrophobic surfaces[J]. Soft Matter, 2016, 12(10): 2 766⁃2 772. |
56 | Wang Y, Yang H, Chen Z, et al. Recyclable oil⁃absorption foams via secondary phase separation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13 834⁃13 843. |
57 | Sun X, Yang S, Xue B, et al. Controllable surface morphology transition from inter⁃connected pores to flower⁃like structures for super⁃hydrophobic poly (L⁃lactic acid) films[J]. Surface and Coatings Technology, 2021, 412: 127032. |
58 | Sun X, Cao Z, Bao R, et al. A green and facile melt approach for hierarchically porous polylactide monoliths based on stereocomplex crystallite network[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8 334⁃8 343. |
59 | Sun X, Yang S, Xue B, et al. Super⁃hydrophobic poly (lactic acid) by controlling the hierarchical structure and polymorphic transformation[J]. Chemical Engineering Journal, 2020, 397: 125297. |
60 | Su Y, Zhao Y, Zheng W, et al. Asymmetric Sc⁃PLA membrane with multi⁃scale microstructures: wettability, antifouling, and oil⁃water separation[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 55 520⁃55 526. |
61 | Chen P, Bai D, Tang H, et al. Polylactide aerogel with excellent comprehensive performances imparted by stereocomplex crystallization for efficient oil⁃water separation[J]. Polymer, 2022, 255: 125128. |
62 | Li R, Zhao X, Coates P, et al. Highly reinforced poly(lactic acid) foam fabricated by formation of a heat⁃resistant oriented stereocomplex crystalline structure[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(37): 12 674⁃12 686. |
63 | Wang L, Lee R E, Wang G, et al. Use of stereocomplex crystallites for fully⁃biobased microcellular low⁃density poly(lactic acid) foams for green packaging[J]. Chemical Engineering Journal, 2017, 327: 1 151⁃1 162. |
64 | Li W, Ren Q, Zhu X, et al. Enhanced heat resistance and compression strength of microcellular poly (lactic acid) foam by promoted stereocomplex crystallization with added D⁃Mannitol[J]. Journal of CO2 Utilization, 2022, 63: 102118. |
65 | Yu K, Wu Y, Zhang X, et al. Microcellular open⁃cell poly(l⁃lactic acid)/poly(d⁃lactic acid) foams for oil⁃water separation prepared via supercritical CO2 foaming[J]. Journal of CO2 Utilization, 2022, 65: 102219. |
66 | Wang S, Yang W, Li X, et al. Preparation of high⁃expansion open⁃cell polylactic acid foam with superior oil⁃water separation performance[J]. International Journal of Biological Macromolecules, 2021, 193: 1 059⁃1 067. |
67 | 蒋长妹, 花铭, 赵士友, 等. 聚乳酸油水分离膜研究进展[J]. 棉纺织技术, 2023, 51(7): 79⁃84. |
JIANG C M, HUA M, ZHAO S Y, et al. Research progress of polylactic acid oil⁃water separation membrane[J]. Cotton Textile Technology, 2023, 51(7):79⁃84. | |
68 | 胡婷婷, 王强英, 赵志朋, 等. 聚乳酸电纺纤维膜的油水分离性能[J]. 化工时刊, 2023, 37(1): 10⁃15. |
HU T T, WANG Q Y, ZHAO Z P, et al. Oil⁃water separation performance of polylactic acid electrospun fiber membrane[J]. Chemical Industry Times, 2023, 37(1):79⁃84. | |
69 | Sabir M I, Xu X, Li L. A review on biodegradable polymeric materials for bone tissue engineering applications[J]. Journal of Materials Science, 2009, 44(21): 5 713⁃5 724. |
70 | Sartore L, Inverardi N, Pandini S, et al. PLA/PCL⁃based foams as scaffolds for tissue engineering applications[J]. Materials Today: Proceedings, 2019, 7: 410⁃417. |
71 | Liu S, Qin S, He M, et al. Current applications of poly(lactic acid) composites in tissue engineering and drug delivery[J]. Composites Part B: Engineering, 2020, 199: 108238. |
72 | 翟文涛, 汪璟, 凌建强, 等. 聚乳酸微发泡材料的制备、成型、性能表征及其应用领域[C]//2011年全国高分子学术论文报告会论文摘要集,大连: 914. |
73 | 邹祎祎, 王克俭. 可降解泡沫在运输包装领域应用研究进展[J]. 塑料包装, 2021, 31(1): 6⁃9, 5. |
ZHOU Y Y, WANG K J. Research progress in the application of biodegradable foam in transportation packaging field[J]. Plastics Packaging, 2021, 31(1):6⁃9,5. | |
74 | 杨志云, 蔡业彬, 张铱鈖. 聚乳酸泡沫塑料的研究进展[J]. 广东石油化工学院学报, 2014, 24(3): 10⁃13, 21. |
YANG Z Y, CAI Y B, ZHANG Y F. Study progress of polylactic acid foamed plastics[J]. Journal of Guangdong University of Petrochemical Technology, 2014, 24(3): 10⁃13, 21. | |
75 | Shi J, Zhang L, Xiao P, et al. Biodegradable PLA nonwoven fabric with controllable wettability for efficient water purification and photocatalysis degradation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2 445⁃2 452. |
76 | Gong W, Guo Y, Yang W, et al. Scalable and reconfigurable green electronic textiles with personalized comfort management[J]. ACS Nano, 2022, 16(8): 12 635⁃12 644. |
77 | Lu T, Cui J, Qu Q, et al. Multistructured electrospun nanofibers for air filtration: A review[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 23 293⁃23 313. |
[1] | 刘顺权, 张馨月, 冯占苗, 傅陈超, 薛平, 张润. PTFE改性技术及其性能优化研究进展[J]. 中国塑料, 2024, 38(7): 112-119. |
[2] | 任小龙, 李艺, 苏丹妮. 高透明性聚酰亚胺薄膜专利技术研究与工业化进展[J]. 中国塑料, 2024, 38(7): 120-137. |
[3] | 胡永祥, 谢纪岭, 李伟铭, 张璐, 汤香港, 吕亿同, 申红望, 鞠冠男. 马来酸酐接枝改性GTR对聚乳酸性能的影响[J]. 中国塑料, 2024, 38(7): 20-24. |
[4] | 王杰, 辛德华, 李晖, 蒋洪石, 周洪福, 赵建国. 纳米黏土与二氧化硅协同改性聚乳酸研究[J]. 中国塑料, 2024, 38(7): 43-48. |
[5] | 杜蓉, 林潼, 肖航, 殷绿, 张进. 纳米Fe3O4改性环氧树脂涂料的制备、性能与应用研究进展[J]. 中国塑料, 2024, 38(6): 132-138. |
[6] | 杨超永, 郭金强, 王富玉, 张玉霞. 挤出吹塑工艺对PBAT/PLA共混体系微观结构与性能的影响[J]. 中国塑料, 2024, 38(5): 82-87. |
[7] | 孛海娃, 赵中国, 王筹萱, 薛嵘. 高导电、低逾渗PLA/CNTs导电复合材料的结构设计及性能研究[J]. 中国塑料, 2024, 38(4): 13-18. |
[8] | 沈丹彤, 薛雨亭, 李荣杰, 徐芳, 翁云宣. 聚乳酸基水性聚氨酯的制备及其在合成革中的应用研究[J]. 中国塑料, 2024, 38(4): 19-25. |
[9] | 孔子萌, 张简, 邓雅馨, 徐雪玲, 陈雅君. 阻燃聚丁二酸丁二醇酯的研究进展[J]. 中国塑料, 2024, 38(2): 105-117. |
[10] | 戚士界, 游翔宇, 王瑞晨, 周琳菲, 张慧洁. 高木质素含量聚乳酸共混材料的制备及其性能研究[J]. 中国塑料, 2024, 38(2): 45-51. |
[11] | 贾梦, 许准, 魏思淼, 张庆磊, 许博. 建筑用泡沫材料阻燃研究进展[J]. 中国塑料, 2024, 38(2): 52-60. |
[12] | 谭晶, 王智, 王朔, 付宏岩, 李长金, 李好义, 杨卫民, 张杨. 树枝状聚合物对聚乳酸熔体微分电纺纤维膜的增韧改性研究[J]. 中国塑料, 2024, 38(2): 7-13. |
[13] | 马秀清, 劳志超, 李明谦, 韩顺涛, 胡楠. 3D打印工艺参数对PLA/PTW共混物力学性能影响的研究[J]. 中国塑料, 2024, 38(2): 70-75. |
[14] | 陈泽宇, 付烨, 张茜, 翁云宣. PLGA的降解行为及应用研究进展[J]. 中国塑料, 2024, 38(1): 92-99. |
[15] | 王玉伟, 肖润祥, 张宏凯, 官文瑾, 邓亚峰. 纳米纤维基空气过滤材料的研究进展[J]. 中国塑料, 2023, 37(9): 115-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||