
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2021, Vol. 35 ›› Issue (10): 147-153.DOI: 10.19491/j.issn.1001-9278.2021.10.023
收稿日期:
2021-03-16
出版日期:
2021-10-26
发布日期:
2021-10-27
基金资助:
WANG Qian, LIU Qing, MO Shunpin, CHEN Xuehua, LYU Wenyan()
Received:
2021-03-16
Online:
2021-10-26
Published:
2021-10-27
Contact:
LYU Wenyan
E-mail:lwy198585@cqut.edu.cn
摘要:
综述了近年来国内外凝胶聚合物电解质(GPE)的研究进展,详细介绍了以聚氧乙烯(PEO)、聚偏二氟乙烯-六氟丙烯[P(VDF?co?HFP)]、聚丙烯腈(PAN)和聚甲基丙烯酸甲酯(PMMA)为基体的GPE的制备方法、改性方法和性能的研究现状;最后,对GPE未来的研究方向进行了展望。
中图分类号:
王倩, 刘庆, 莫顺聘, 陈雪花, 吕文晏. 凝胶聚合物电解质研究进展[J]. 中国塑料, 2021, 35(10): 147-153.
WANG Qian, LIU Qing, MO Shunpin, CHEN Xuehua, LYU Wenyan. Research Progress of Gel Polymer Electrolyte[J]. China Plastics, 2021, 35(10): 147-153.
性能 | GPE | 全固态聚合物电解质 |
---|---|---|
安全性 离子电导率/S·m-1 热力学稳定性 电化学稳定性 力学性能 形状可塑性 | 很好 10-4~10-3 一般 一般 很好 很好 | 很好 10-5~10-4 很好 很好 很好 很好 |
性能 | GPE | 全固态聚合物电解质 |
---|---|---|
安全性 离子电导率/S·m-1 热力学稳定性 电化学稳定性 力学性能 形状可塑性 | 很好 10-4~10-3 一般 一般 很好 很好 | 很好 10-5~10-4 很好 很好 很好 很好 |
1 | BLOMGREN G E. The Development and Future of Lithium⁃ion Batteries[J]. Journal of the Electrochemical Society, 2017, 164: 5 019⁃5 025. |
2 | 王永红, 来文青, 石海鹏, 等. 三元锂离子电池容量衰减机理研究进展[J]. 化学通报,2020, 83(9): 785⁃791. |
WANG Y H, LAI W Q, SHI H P, et al. Research Progress in Capacity Fading Mechanisms of Ternary Lithium Ion Batteries[J]. Chemistry, 2020, 83(9): 785⁃791. | |
3 | YANG Y Q, CHANG Z. A Sodium Ion Conducting Gel Polymer Electrolyte[J]. Solid State Ionics, 2015, 269:1⁃7. |
4 | 朱映华. 锂离子电池用PEO基复合聚合物电解质的制备及研究[D]. 长沙:中南林业科技大学, 2019. |
5 | LI M S, LIAO Y H, LIU Q Y, et al. Application of the Imidazolium Ionic Liquid Based Nano⁃particle Decorated Gel Polymer Electrolyte for High Safety Lithium Ion Battery[J]. Electrochimica Acta, 2018, 284: 188⁃201. |
6 | ZHOU D, LI W, TAN C, et al. Cresyl Diphenyl Phosphate as Flame Retardant Additive for Lithium⁃ion Batteries[J]. Journal of Power Sources, 2008, 184(2): 589⁃592. |
7 | 张桥保, 龚正良, 杨 勇. 硫化物固态电解质材料界面及其表征的研究进展[J]. 物理学报, 2020, 69(22): 159⁃186. |
ZHANG Q B, GONG Z L, YANG Y. The Research Progress of Interface and Characterization of Solid Electrolyte Materials for Sulfide[J]. Acta Physica Sinica, 2020, 69(22): 159⁃186. | |
8 | JEFFREY W F. Ceramic and Polymeric Solid Electrolytes for Lithium⁃ion Batteries[J]. Journal of Power Sources, 2010, 195: 4 554⁃4 569. |
9 | PELED E, GOLODNITSKY D, ARDEL G, et al. The Sei Model⁃Application to Lithium⁃Polymer Electrolyte Batteries[J]. Electrochimica Acta, 1995, 40:2 197⁃2 204. |
10 | 杨世杰, 徐向群, 程新兵等. 柱状金属锂沉积物:电解液添加剂的影响[J]. 物理化学学报, 2021, 37(1): 142⁃149. |
YANG S J, XU X Q, CHENG X B, et al. Columnar Lithium Metal Deposits: The Role of Non⁃Aqueous Electrolyte Additive[J]. Acta Physico⁃Chimica Sinica, 2021,37(1): 142⁃149. | |
11 | REN W H, DING C F, FU X W, et al. Advanced Gel Polymer Electrolytes for Safe and Durable Lithium Metal Batteries: Challenges, Strategies, and Perspectives[J]. Energy Storage Materials, 2020, 8 297(20): 1⁃63. |
12 | 汪 杨. PVDF⁃HFP基凝胶聚合物电解质的制备和性能研究[D]. 北京:北京化工大学, 2017. |
13 | STEPHAN M. Review on Gel Polymer Electrolytes for Lithium Batteries[J]. European Polymer Journal, 2005, 42(1): 21⁃42. |
14 | 袁 鸽, 王梦琨, 熊 莲,等. 锂离子电池凝胶电解质研究进展[J]. 新能源进展, 2020, 8(4): 331⁃338. |
YUAN G, WANG M K, XIONG L,et al. Research Advances on Gel Electrolytes for Lithium Ion Batteries[J]. Advances in New and Renewable Energy, 2020, 8(4): 331⁃338. | |
15 | 郭耀文. 基于聚环氧乙烷基凝胶聚合物电解质的研究现状[C]//第十届国际(中国)功能材料及其应用学术会议、第六届国际多功能材料与结构学术大会、首届国际新材料前沿发展大会摘要集.重庆:中国仪器仪表学会仪表功能材料分会, 2019:1. |
16 | BERTHIER C, GORECKI W, MINIER M, et al. Microscopic Investigation of Ionic Conductivity in Alkali Metal Salts⁃poly(ethylene oxide) Adducts[J]. Solid State Ionics, 1983, 11(1): 91⁃95. |
17 | 吴 勰, 薛照明, 周 莉,等. 共混改性的PEO/TPU/PVDF⁃HFP基聚合物电解质的制备及性能[J]. 精细化工, 2021, 38(1): 155⁃161. |
WU X, XUE Z M, ZHOU L, et al. Preparation and Properties of Blend Modified PEO/TPU/PVDF⁃HFP⁃based Polymer Electrolyte[J]. Fine Chemicals, 2021, 38(1): 155⁃161. | |
18 | CROCE F, SETTIMI L, SCROSATI B. Superacid ZrO2⁃Added, Composite Polymer Electrolytes with Improved Transport Properties[J]. Electrochemistry Communications, 2006, 8: 364⁃368. |
19 | LIN D, YUEN P Y, LIU Y, et al. A Silica⁃Aerogel⁃Reinforced Composite Polymer Electrolyte with High Ionic Conductivity and High Modulus[J]. Advanced Materials, 2018, 30: 1802661. |
20 | XIONG H M, WANG Z D, XIE D P, et al. Stable Polymer Electrolytes Based on Polyether⁃Grafted ZnO Nanoparticles for All⁃Solid⁃State Lithium Batteries[J]. Journal of Materials Chemistry, 2006, 16: 1 345⁃1 349. |
21 | LI W L, ZHU Z B, SHEN W J, et al. A Novel PVDF⁃Based Composite Gel Polymer Electrolyte Doped with Ionomer Modified Graphene Oxide[J]. RSC Advances, 2016, 6(99): 97 338⁃97 345. |
22 | YUAN M, ERDAMN J, TANG C, et al. High Performance Solid Polymer Electrolyte with Graphene Oxide Nanosheets[J]. RSC Advances, 2014, 4: 59 637⁃59 642. |
23 | GAO S, ZHONG J, XUE G B, et al. Ion Conductivity Improved Polyethylene Oxide/Lithium Perchlorate Electrolyte Membranes Modified by Graphene Oxide [J]. Journal of Membrane Science, 2014, 470: 316⁃322. |
24 | 李亚娟,詹 晖,刘素琴,等. 纳米阻燃氢氧化镁/聚氧化乙烯复合聚合物电解质[J]. 物理化学学报, 2010, 26(9): 2 387⁃2 391. |
LI Y J, ZHAN H, LIU S Q, et al. Nanosized Flame Retarded Hydroxide Magnesium/ Poly(ethylene⁃oxide) Composite Polymer Electrolyte[J]. Acta Physico⁃Chimica Sinica, 2010, 26(9): 2 387⁃2 391. | |
25 | GUO X Q, PENG W J, WU Y Q, et al. Al4B2O9 Nanorods⁃Modified Solid Polymer Electrolytes with Decent Integrated Performance[J]. Science China Materials, 2020, 64(2): 296⁃306. |
26 | CAI D, WANG D H, CHEN Y J, et al. A Highly Ion⁃Conductive Three⁃Dimensional LLZAO⁃PEO/LiTFSI Solid Electrolyte for High⁃Performance Solid⁃State Batteries[J]. Chemical Engineering Journal, 2020, 394: 1⁃8. |
27 | GAO H, HUANG Y, ZHANG Z, et al. Li6.7La3Zr1.7Ta0.15Nb0.15O12 Enhanced UV⁃Cured Poly(ethyleneoxide)⁃Based Composite Gel Polymer Electrolytes for Lithium Metal Batteries[J]. Electrochimica Acta, 2019, 316: 283⁃291. |
28 | 吴金坤. PVDF的特性及其生产现状[J]. 化工新型材料, 1998(12): 3⁃5. |
WU J K. Characteristics And Production Status of PVDF[J]. New Chemical Materials, 1998(12): 3⁃5. | |
29 | 宁景霞, 李 柯, 肖 阳,等. 熔融静电纺β⁃PVDF超细纤维隔膜的制备及性能[J]. 高分子材料科学与工程, 2018, 34(3): 151⁃156. |
NING J X, LI K, XIAO Y, et al. Preparation and Properties of Fused Electrospun β⁃PVDF Microfiber Separator[J]. Polymer Materials Science and Engineering, 2018, 34(3): 151⁃156. | |
30 | LUO K L, SHAO D S, LI Y, et al. Semi⁃Interpenetrating Gel Polymer Electrolyte Based on PVDF⁃HFP for Lithium⁃ion Batteries[J]. Applied Polymer Science, 2020, 138(11): 1⁃10. |
31 | XU P, CHEN H Y, ZHOU X, et al. Gel Polymer Electrolyte Based on PVDF⁃HFP Matrix Composited with rGO⁃PEG⁃NH2 for High⁃Performance Lithium Ion Battery[J]. Journal of Membrane Science, 2021, 617: 1⁃8. |
32 | KOU Z Y, LIU C J, MIAO C, et al. High⁃Performance Gel Polymer Electrolytes Using P(VDF⁃HFP) Doped with Appropriate Porous Carbon Powders as the Matrix for Lithium⁃ion Batteries[J]. Electronic Supplementary Material, 2020, 26(4): 1 729⁃1 737. |
33 | LI L, LI H J, WANG Y, et al. Poly(vinylidenefluoride⁃hexafluoropropylene)/Cellulose/ Carboxylic TiO2 Composite Separator with High Temperature Resistance for Lithium⁃ion Batteries[J]. Electronic Supplementary Material. 2020, 26(9): 4 489⁃4 497. |
34 | AHMAD A L, FAROOQUI U R, HAMID N A, et al. Synthesis and Characterization of Porous Poly(vinylidene fluoride⁃co⁃hexaflouro propylene)(PVDF⁃co⁃HFP)/Poly(aniline) (PANI)/ Graphene Oxide(GO) Ternary Hybrid Polymer Electrolyte Membrane[J]. Electrochimica Acta, 2018, 283: 842⁃849. |
35 | AHMAD A L, FAROOQUI U R, HAMID N A, et al. Effect of Graphene Oxide (GO) on Poly(vinylidene fluoride⁃1 hexafluoropropylene) (PVDF⁃HFP) Polymer Electrolyte Membrane[J]. Materials Letters, 2018, 142: 330⁃336. |
36 | CHEN H Y, XU P, CHEN L, et al. Enhanced Ion Transport in PVDF⁃HFP Gel Polymer Electrolyte Containing PDA@BN for Lithium⁃ion Batteries[J]. Materials Letters, 2020, 227: 128 391⁃128 394. |
37 | FAN H Y, YANG C H, WANG X D, et al. UV⁃Curable PVDF⁃HFP⁃Based Gel Electrolytes with Semi⁃interpenetrating Polymer Network for Dendrite⁃Free Lithium Metal Batteries[J]. Journal of Electroanalytical Chemistry, 2020, 871: 1⁃7. |
38 | SINGH R, JANAKIRAMAN S, KHALIFA M, et al. A High Thermally Stable Polyacrylonitrile (PAN)⁃Based Gel Polymer Electrolyte for Rechargeable Mg⁃ion Battery[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(24): 22 912⁃22 925. |
39 | XU H, ZHANG X, JIANG J Y, et al. Ultrathin Li7La3Zr2O12@PAN Composite Polymer Electrolyte with High Conductivity for All⁃Solid⁃State Lithium⁃ion Battery[J]. Solid State Ionics, 2020, 347: 1⁃6. |
40 | HU P, CHAI J C, DUAN Y L, et al. Progress in Nitrile⁃Based Polymer Electrolytes for High Performance Lithium Batteries[J]. Journal of Materials Chemistry A, 2016, 4(26): 10 070⁃10 083. |
41 | KWON O H, KIM J K. Electrochemical Performance of High⁃Voltage LiMn0.8Fe0.2PO4 Cathode with Polyacrylonitrile (PAN)⁃Based Gel Polymer Electrolyte[J]. Korean Chemical Engineering Research, 2019, 57: 547⁃552. |
42 | HE C F, LIU J Q, LI J, et al. A Gel Polymer Electrolyte Based on Polyacrylonitrile/Organic Montmorillonite Membrane Exhibiting Dense Structure for Lithium Ion Battery[J]. Solid State Ionics, 2018, 315: 102⁃110. |
43 | HE C F, LIU J Q, LI J, et al. Blending Based Polyacrylonitrile/poly(vinyl alcohol) Membrane for Rechargeable Lithium Ion Batteries[J]. Journal of Membrane Science, 2018, 286: 242⁃251. |
44 | 张珍珍. PAN/PEO凝胶型聚合物电解质的制备研究[D]. 北京:北京化工大学, 2015. |
45 | LIU Q H, JIANG W W, LU W Z, et al. Anisotropic Semi⁃Aligned PAN@PVdF⁃HFP Separator for Li⁃ion Batteries[J]. Nanotechnology, 2020, 31(43): 1⁃21. |
46 | HUANG Y X, HUANG Y, LIU B, et al. Gel Polymer Electrolyte Based on P(acrylonitrile⁃maleic anhydride) for Lithium Ion Battery[J]. Electrochimica Acta, 2018, 286: 242⁃251. |
47 | LIU B, HUANG Y, CAO H J, et al. A Novel Porous Gel Polymer Electrolyte Based on Poly(acrylonitrile⁃polyhedraloligomeric silsesquioxane) with High Performances for Lithium⁃ion Batteries[J]. Journal of Membrane Science, 2018, 545: 140⁃149. |
48 | HOSSEINIOUN A, NURNGERG P, MONIKA S, et al. Improved Lithium Ion Dynamics in Crosslinked PMMA Gel Polymer Electrolyte[J]. RSC Advances, 2019, 9(47): 27 574⁃27 582. |
49 | ZHANG J, CHEN S, XIE X, et al. Porous Poly(vinylidene fluoride⁃co⁃hexafluorpropylene) Polymer Membrane with Sandwich⁃Like Architecture for Highly Safe Lithium Ion Batteries[J]. Journal of Membrane Science, 2014, 472: 133⁃140. |
50 | 赵 莉,杜 蘅,刘 虎,等. 纳米SiO2微球在PMMA凝胶聚合物电解质中的尺寸效应及其在全固态电致变色器件中的应用[J]. 复合材料学报, 2021, 38:1⁃10. |
ZHAO L, DU H, LIU H, et al. Size Effect of Nano⁃SiO2 Microspheres in PMMA Gel Polymer Electrolyte And its Application in All⁃solid⁃state Electrochromic Devices[J]. Acta Materiae Compositae Sinica, 2021, 38:1⁃10. | |
51 | SIMRANJIT S, NARINDER A, KAMALDEEP P, et al. FTIR and Rheological Studies of PMMA⁃Based Nano⁃Dispersed Gel Polymer Electrolytes Incorporated with LiBF4 and SiO2[J]. Ionics, 2018, 25(4): 1 495⁃1 503. |
52 | YANG C L, LI W J, LIU H Y, et al. Batwing⁃Like Polymer Membrane Consisting of PMMA⁃Grafted Electrospun PVDF⁃SiO2 Nanocomposite Fibers for Lithium⁃ion Batteries[J]. Journal of Membrane Science, 2015, 495: 341⁃350. |
53 | 周锦涛. 纳米SiO2颗粒添加改性PVDF/PMMA静电纺丝锂离子电池隔膜的制备与性能研究[D]. 天津:天津工业大学, 2017. |
54 | YANG P T, ZHANG P, SHI C, et al. The Functional Separator Coated with Core⁃Shell Structured Silica⁃Poly(methyl methacrylate) Sub⁃Microspheres for Lithium⁃ion Batteries[J]. Journal of Membrane Science, 2015, 474: 148⁃155. |
55 | JAMALPOUR S, GHAHRAMANI M, GHAFFARIAN S R, et al. The Effect of Poly(hydroxyl ethyl methacrylate) on The Performance of PVDF/P(MMA⁃co⁃HEMA) Hybrid Gel Polymer Electrolytes for Lithium Ion Battery Application[J]. Polymer, 2020, 195: 1⁃12. |
56 | 谭 力. 锂离子电池用PVDF/PVC/PMMA凝胶聚合物电解质的制备与研究[D]. 长沙:湘潭大学, 2019. |
57 | 康树森, 杨程响, 杨泽林,等. 旋涂法制备PEO⁃PAN⁃PMMA三组分共混凝胶聚合物电解质[J]. 化学学报, 2020, 78(12): 1 441⁃1 447. |
KANG S S, YANG C X, YANG Z L, et al. Blending Based PEO⁃PAN⁃PMMA Gel Polymer Electrolyte Prepared by Spaying Casting for Solid⁃state Lithium Metal Batteries[J]. Acta Chimica Sinica, 2020, 78(12): 1 441⁃1 447. | |
58 | SHI J, XIONG H G, YANG Y F, et al. Nano⁃Sized Oxide Filled Composite PEO/PMMA/P(VDF⁃HFP) Gel Polymer Electrolyte for Rechargeable Lithium and Sodium Batteries[J]. Solid State Ionics, 2018, 326: 136⁃144. |
[1] | 周舒毅, 朱敏, 刘忆颖, 曹舒惠, 蔡启轩, 聂慧, 张玉霞, 周洪福. 高分子止血材料研究进展[J]. 中国塑料, 2022, 36(7): 74-84. |
[2] | 刘伟, 吴显, 陈小澄, 成晓琼, 张纯. 羧基化填料对聚乙烯醇/纳米纤维素水凝胶力学、导电和传感性能的影响[J]. 中国塑料, 2022, 36(6): 16-23. |
[3] | 杨小龙, 陈文静, 李永青, 闫晓堃, 王修磊, 谢鹏程, 马秀清. 导电型聚合物/石墨烯复合材料的研究进展[J]. 中国塑料, 2022, 36(6): 165-173. |
[4] | 孙旗, 高兴, 崔雪梅, 连慧琴, 崔秀国, 汪晓东. 黑磷烯纳米阻燃剂研究进展[J]. 中国塑料, 2022, 36(5): 133-139. |
[5] | 田驰锋, 张洪申. 基于翅片式摩擦桶的车用聚合物粒子荷电及静电分离探索[J]. 中国塑料, 2022, 36(5): 75-80. |
[6] | 宋立健, 张有忱, 左夏华, 张政和, 安瑛, 杨卫民, 谭晶, 程礼盛. 自组装单分子层调控界面热输运的研究进展[J]. 中国塑料, 2022, 36(4): 60-69. |
[7] | 程曼芳, 白继峰, 王文清, 雷良才, 李海英, 韩向艳, 胡跃鑫. 基于超支化聚对氯甲基苯乙烯聚合离子液体共混体系的制备与表征[J]. 中国塑料, 2022, 36(3): 40-47. |
[8] | 张庭, 金清平, 宋仕娥, 曹南南, 邓思远. 不同腐蚀环境下FRP筋耐久性与寿命预测研究进展[J]. 中国塑料, 2022, 36(3): 75-81. |
[9] | 郝春波, 刘万胜, 赵欣麟, 王岩, 王月. 本体ABS用橡胶国产化替代分析及评价[J]. 中国塑料, 2022, 36(3): 89-95. |
[10] | 安瑛, 刘宇亮, 谭晶, 杨卫民, 阎华, 李好义. 聚合物离心静电纺丝技术研究进展[J]. 中国塑料, 2022, 36(1): 172-177. |
[11] | 董星彤, 王向东, 孙晓红, 陈士宏. 密度泛函理论在聚合物发泡领域中的应用研究进展[J]. 中国塑料, 2021, 35(7): 126-133. |
[12] | 盛天阳, 谭晶, 张政和, 高晓东, 于景超, 程礼盛, 杨卫民. 微纳层叠聚丙烯腈凝胶流动特性的数值模拟研究[J]. 中国塑料, 2021, 35(7): 74-79. |
[13] | 周国发, 张馨予, 傅彬益. 模内微装配成型运动副界面损伤变形模拟分析[J]. 中国塑料, 2021, 35(6): 60-67. |
[14] | 刘彤, 魏建斐, 王锐. 金属催化剂在聚合物降解成炭阻燃中的研究进展[J]. 中国塑料, 2021, 35(5): 135-145. |
[15] | 吴悠, 王博华, 孙健健, 靳玉娟. 端环氧基型超支化聚合物对PPC/PBS共混物的改性研究[J]. 中国塑料, 2021, 35(4): 5-11. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||