
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2021, Vol. 35 ›› Issue (6): 111-124.DOI: 10.19491/j.issn.1001-9278.2021.06.018
收稿日期:
2020-10-12
出版日期:
2021-06-26
发布日期:
2021-06-23
基金资助:
FENG Xiping1(), ZHANG Shengyuan2, LIANG Qun1, WANG Bo3
Received:
2020-10-12
Online:
2021-06-26
Published:
2021-06-23
Contact:
FENG Xiping
E-mail:fengxiping@nwpu.edu.cn
摘要:
鉴于热塑性树脂基复合材料激光原位固化技术在武器装备制造领域的巨大应用前景,为促进激光原位固化复合材料成型技术发展,本文在对激光原位固化成型技术进行国内外的研究和应用总结基础上,对激光原位固化过程所涉及的机理进行了讨论,对激光原位固化实验研究进行了总结,对固化过程中的温度场仿真进行了论述,同时对该技术在航空航天领域的发展和研究方向进行了探讨。从机理研究、固化实验和温度场模拟3个方面对热塑性树脂基复合材料激光原位固化成型技术国内外的研究和应用情况进行回顾和总结,并探讨了激光原位固化技术的最新发展趋势。
中图分类号:
冯喜平, 张盛源, 梁群, 王博. 热塑性树脂基复合材料激光原位固化研究进展[J]. 中国塑料, 2021, 35(6): 111-124.
FENG Xiping, ZHANG Shengyuan, LIANG Qun, WANG Bo. A Review of Laser In⁃situ Curing of Thermoplastic Composites[J]. China Plastics, 2021, 35(6): 111-124.
材料名称 | 弯曲强度/MPa | 弯曲模量/GPa | 拉伸强度/MPa | 拉伸模量/GPa | 压缩强度/GPa | 热变形温度/℃ |
---|---|---|---|---|---|---|
PEEK | 142 | 4.0 | 97 | 2.8 | 130 | 230 |
聚四氟乙烯(PTFE) | 13 | 0.7 | 20 | 0.4 | 12 | 55 |
聚苯醚(PPO) | 110 | 2.0 | 66 | 2.7 | 100 | 190 |
聚酰亚胺(TPI) | 176 | 3.3 | 116 | 3.0 | 148 | 260 |
PPS | 142 | 3.3 | 85 | 2.5 | 120 | 240 |
聚砜(PSF) | 118 | 2.7 | 74 | 2.5 | 95 | 175 |
材料名称 | 弯曲强度/MPa | 弯曲模量/GPa | 拉伸强度/MPa | 拉伸模量/GPa | 压缩强度/GPa | 热变形温度/℃ |
---|---|---|---|---|---|---|
PEEK | 142 | 4.0 | 97 | 2.8 | 130 | 230 |
聚四氟乙烯(PTFE) | 13 | 0.7 | 20 | 0.4 | 12 | 55 |
聚苯醚(PPO) | 110 | 2.0 | 66 | 2.7 | 100 | 190 |
聚酰亚胺(TPI) | 176 | 3.3 | 116 | 3.0 | 148 | 260 |
PPS | 142 | 3.3 | 85 | 2.5 | 120 | 240 |
聚砜(PSF) | 118 | 2.7 | 74 | 2.5 | 95 | 175 |
1 | 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):12⁃12. |
DU S Y. Advanced Composite Materials and Aerospace[J]. Acta Materiae Compositae Sinica, 2007, 24(1):12⁃12. | |
2 | 刘 怡, 朱光明. 纤维增强树脂基复合材料固化工艺的发展[J]. 中国塑料, 2018, 32(6):1⁃9. |
LIU Y, ZHU G M. Development of Curing Process for Fiber Reinforced Resin Matrix Composites[J]. China Plastics, 2018, 32(6):1⁃9. | |
3 | 曹忠亮, 富宏亚, 付云忠, 等. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5):894⁃900. |
CAO Z L, FU H Y, FU Y Z, et al. A Review of Robotic Prepreg Placement and In⁃situ Consolidation for Manufacturing Fiber⁃reinforced Thermoplastic Composites:Heat Transfer Behavior and Interlaminar Properties [J]. Materials Reports, 2019, 33(5):894 ⁃900. | |
4 | 陈吉平, 李 岩, 刘卫平, 等. 连续纤维增强热塑性树脂基复合材料自动铺放原位成型技术的航空发展现状[J]. 复合材料学报, 2019, 36(4):784⁃794. |
CHEN J P, LI Y, LIU W P, et al. Development of AFP In⁃situ Consolidation Technology on Continuous Fiber Reinforced Thermoplastic Mmatrix Composites in Aviation[J]. Acta Materiae Compositae Sinica, 2019, 36(4):784⁃794. | |
5 | 张 辉, 方良超, 陈奇海,等. 聚醚醚酮在航空航天领域的应用[J]. 新技术新工艺, 2018, 370(10):10⁃13. |
ZHANG H, FANG L C, CHEN Q H, et al. Application of PEEK in Aerospace Industry [J]. New Technology and New Process, 2018, 370(10):10⁃13. | |
6 | 郭云竹. 热塑性复合材料研究及其在航空领域中的应用[J]. 纤维复合材料, 2016(3):20⁃23. |
GUO Y Z. Research on Thermoplastic Composites and its Application in the Field of Aviation [J]. Fiber Compo⁃sites, 2016(3):20⁃23. | |
7 | AUGEST Z, OSTRANDER G, MICHASIOW J, et al. Recent Developments in Automated Fiber Placement of Thermoplastic Composites[J]. SAMPE Journal, 2014, 50(2): 30⁃37. |
8 | 耿 鹏. 聚醚醚酮及其复合材料增材制造机理与实验研究[D]. 长春: 吉林大学, 2019. |
9 | 赵文砚. 聚醚醚酮纤维/碳纤维针刺毡及复合材料的制备与性能研究[D]. 长春: 吉林大学, 2019. |
10 | 李 欣. 碳纤维/聚醚醚酮编织复合材料的制备及性能研究[D]. 长春: 吉林大学, 2017. |
11 | 梁 群, 冯喜平. 复合材料壳体固化成型过程残余应力和形变分析[J]. 固体火箭技术, 2019, 42(5):628⁃634. |
LIANG Q, FENG X P. Residual Stress and Structural Distortion Analysis for the Curing Process of SRM Composite Case [J]. Journal of Solid Rocket Technology, 2019, 42(5):628⁃634. | |
12 | STOKES⁃GRIFFIN C M, COMPSTON P, MATUSZYK T I, et al. Thermal Modelling of the Laser⁃Assisted Thermoplastic Tape Placement Process[J]. Journal of Thermoplastic Composite Materials, 2015, 28(10): 1 445⁃1 462. |
13 | GHASEMI NEJHAD M N, COPE R D, GUCERI¸ S I. Thermal Analysis of In⁃Situ Thermoplastic⁃Matrix Composite Filament Winding[J]. Jouranal of Heat Transfer. 1991; 113(2): 304⁃313. |
14 | GROVE S M. Thermal Modelling of Tape Laying with Continuous Carbon Fibre⁃Reinforced Thermoplastic[J]. Composites, 1988, 19(5): 367⁃375. |
15 | BEYELER E P, GUCERI S I. Thermal Analysis of Laser⁃Assisted Thermoplastic⁃Matrix Composite Tape Consolidation[J].Jouranal of Heat Transfer. May1988, 110(2): 424⁃430. |
16 | GHASEMI NEJHAD M N, COPE R D, GUCERI¸ S I. Thermal Analysis of In⁃Situ Thermoplastic Composite Tape Laying[J]. Journal of Thermoplastic Composite Materials, 1991, 4(1): 20⁃45. |
17 | STOKES⁃GRIFFIN C M, COMPSTON P. Optical Cha⁃racterisation and Modelling for Oblique Near⁃Infrared Laser Heating of Carbon Fibre Reinforced Thermoplastic Composites[J]. Engineering, 2015, 72: 1⁃11. |
18 | STOKES⁃GRIFFIN C M, COMPSTON P. A Combined Optical⁃Thermal Model for Near⁃Infrared Laser Heating of Thermoplastic Composites in an Automated Tape Placement Process[J]. Engineering, 2015, 75: 104⁃115. |
19 | CLANCY G,PEETERS D P,OLIVERI V. A Study of the Influence of Processing Parameters on Steering of Carbon Fibre/PEEK Tapes Using Laser⁃Assisted Tape Placement[J]. Engineering, 2019, 163: 243⁃251. |
20 | OROMIEHIE E, GANGADHARA PRUSTY B, COMPSTON P, et al. In⁃Situ Simultaneous Measurement of Strain and Temperature in Automated Fiber Placement (AFP) Using Optical Fiber Bragg Grating (FBG) Sensors[J]. Advanced Manufacturing: Polymer & Composites Science, 2017, 3(2): 52⁃61.. |
21 | LI Z M,YANG T,DU Y. Dynamic Finite Element Simulation and Transient Temperature Field Analysis in Thermoplastic Composite Tape Lay⁃Up Process[J]. Journal of Thermoplastic Composite Materials, 2015, 28(4): 558⁃573. |
22 | 张小辉,朱玉祥,张少秋,等. 先进复合材料自动铺丝技术研究进展[J]. 航空制造技术, 2018, 61(7): 54⁃61. |
ZHANG X H, ZHU Y X, ZHANG S Q, et al. Research Pro⁃gress on Automated Fiber Placement Technology[J]. Aeronautical Manufacturing Technology, 2018, 61(7):54⁃61. | |
23 | 郭德晖. POM在激光透射焊接中的热降解行为研究[D]. 镇江: 江苏大学, 2016. |
24 | ACHERJEE B, KUAR A S, MITRA S, et al. Effect of Carbon Black on Temperature Field and Weld Profile During Laser Transmission Welding of Polymers: A FEM study[J]. Optics & Laser Technology, 2012, 44(3): 514⁃521. |
25 | ADEN M, MAMUSCHKIN V, OLOWINSKY A. Influence of Carbon Black and Indium Tin Oxide Absorber Particles on Laser Transmission Welding[J]. Optics & Laser Technology, 2015, 69: 87⁃91. |
26 | 宋清华,刘卫平,陈吉平,等. 碳纤维增强聚苯硫醚复合材料激光加热原位成型过程中的温度场[J]. 复合材料学报, 2019, 36(2): 283⁃292. |
SONG Q H, LIU W P, CHEN J P, et al. Temperature Field for Laser Heating Carbon Fiber Reinforced Polyphenylene Matrix Composite in an Automated Fiber Placement Process[J]. Acta Materiae Compositae Sinica, 2019, 36(2): 283⁃292. | |
27 | 宋清华, 刘卫平, 肖 军,等. 热塑性复合材料自动铺放工艺参数分析与优化[J]. 复合材料学报, 2018, 35(5):1 149⁃1 157. |
SONG Q H, LIU W P,XIAO J , et al. Analysis and Optimization of the Processing Parameters for Automated Fiber Placement of Thermoplastic Composites[J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1 149⁃1 157. | |
28 | 宋清华, 刘卫平, 刘小林, 等. 热塑性复合材料原位成型过程铺层间结合强度[J]. 航空学报, 2019 (4): 259⁃267. |
SONG Q H, LIU W P, LIU X L , et al. Interlaminar Bonding Strength for Thermoplastic Composite in an in⁃situ Consolidation Process[J]. Acta Aeronautica et Astronautica Sinica, 2019 (4): 259⁃267. | |
29 | 韩振宇, 王振宇, 边东岩, 等. 自动铺丝构件缺陷形成机理的研究进展[J]. 纤维复合材料, 2014, 31(4): 3⁃7. |
HAN Z Y, WANG Z Y, BIAN D Y, et al. A Review on Advances in Defect Formation Mechanism of Automated Fiber Placement Components[J]. Fiber Composites, 2014, 31(4): 3⁃7. | |
30 | 熊孟云,石家宾,杨 洋,等.碳纤维增强聚醚醚酮的非等温结晶行为与力学性能[J].合成纤维,2019,48(7):20⁃27. |
XIONG M Y, SHI J B, YANG Y , et al. Non⁃isothermal Crystallization Behavior and Mechanical Properties of Carbon Fiber Reinforced Polyetheretherketone[J]. Synthetic Fiber in China, 2019, 48(7): 20⁃27. | |
31 | 郭来辉,方省众,王贵宾,等.热塑性聚酰亚胺与聚醚醚酮共混物的等温结晶动力学[J].高等学校化学学报,2011,32(12):2 908⁃2 915. |
GUO L H, FANG S Z, WANG G B , et al. Isothermal Crystallization Kinetics of Blends of Thermoplastic Polyimide and Polyetheretherketone[J]. Chemical Journal of Chinese Universities, 2011, 32(12): 2 908 ⁃2 915. | |
32 | 侯红玲, 解玉坤, 赵晋平. 激光切割铝合金吸收率试验研究[J]. 表面技术, 2016, 45(10):193⁃198. |
HOU H L, XIE Y K, ZHAO J P. Experimental Research on Absorptivity of Aluminum Alloy Cut by Laser [J]. Surface Technology, 2016, 45(10):193⁃198. | |
33 | 钱秋冬, 汪庆桃, 钱浩勇. 激光辐照过程中材料吸收率的理论研究[C]//第28届全国结构工程学术会议论文集 (第Ⅲ册). 南昌:2019. CSTAM2019⁃P49⁃E0135. |
34 | 朱文凯,还大军,肖 军,等.激光辐照碳纤维复合材料的光学行为与仿真[J].玻璃钢/复合材料,2019(8):72⁃77. |
ZHU W K, HUAN D J, XIAO J, et al. Optical Behavior and Simulation of Laser⁃irradiated Carbon Fiber Compo⁃sites[J]. Fiberglass/Composite Materials, 2019(8):72⁃77. | |
35 | GROUVE W. Weld Strength of Laser⁃Assisted Tape⁃Placed Thermoplastic Composites[D]. Netherland :University of Twente, 2012. |
36 | 于 飞.石墨烯/聚醚醚酮复合材料的制备及其结晶动力学研究[D]. 长春: 长春工业大学,2018. |
37 | 宋清华,肖 军,文立伟,等.自动铺放成型热塑性复合材料的非等温结晶动力学研究[J].材料工程,2018,46(4):120⁃126. |
SONG Q H, XIAO J, WEN L W , et al. Non⁃Isothermal Crystallization Kinetics of Thermoplastic Composites for Automated Fiber Placement[J]. Journal of Materials Engineering, 2018, 46(4): 120⁃ 126. | |
38 | CHOE C R, LEE K H. Nonisothermal Crystallization Kinetics of Poly (etheretherketone)(PEEK)[J]. Polymer Engineering & Science, 1989, 29(12): 801⁃805. |
39 | 杨 海, 刘天西. 聚合物结晶动力学[J]. 南阳师范学院学报, 2007, 6(12):37⁃40,51. |
YANG H, LIU T X. Crystallization Kinetics of Polymers[J]. Journal of Nanyang Normal University, 2007, 6(12):37⁃40,51. | |
40 | 张 鹏. 聚醚醚酮双重熔融行为、耐溶剂性及溶剂诱导结晶的研究[D]. 长春: 吉林大学, 2011. |
41 | 沈 蕾,杨海存,龚方红. 玻璃纤维增强聚丙烯非等温结晶动力学研究[J]. 中国塑料, 2012, 26(12): 62⁃65. |
SHEN L, YANG H C, GONG F H. Non⁃Isothermal Crystallization Kinetics of Glass Fiber Reinforced Polypropylene[J]. China Plastics, 2012, 26(12): 62⁃65. | |
42 | 姜 涛,王 菲,吴全才. 改性PET共聚酯的非等温结晶行为[J]. 塑料, 2015, 44(5): 101⁃104. |
JIANG T, WANG F, WU Q C. Non⁃Isothermal Crystallization Behavior of Modified PET Copolyester[J]. Plastics, 2015, 44(05): 101⁃104. | |
43 | 侯月娇,曲敏杰,聂 琰,等.PEEK/CF复合材料的非等温结晶动力学研究[J].现代塑料加工应用,2016,28(5):19⁃22. |
HOU Y J, QU M J, NIE Y , et al. Non⁃isothermal Crystallization Kinetics of PEEK/CF Composites[J]. Modern Plastics Processing and Applications, 2016, 28(5): 19⁃22. | |
44 | TOBIN M C. The Theory of Phase Transition Kinetics With Growth Site Impingement. II. Heterogeneous Nucleation[J]. Journal of Polymer Science: Polymer Physics Edition, 1976, 14(12): 2 253⁃2 257. |
45 | TOBIN M C. Theory of Phase Transition Kinetics With Growth Site Impingement. III. Mixed Heterogeneous–Homogeneous Nucleation and Nonintegral Exponents of the Time[J]. Journal of Polymer Science: Polymer Physics Edition, 1977, 15(12): 2 269⁃2 270. |
46 | TOBIN M C. Theory of Phase Transition Kinetics With Growth Site Impingement. I. Homogeneous Nucleation[J]. Journal of Polymer Science: Polymer Physics Edition, 1974, 12(2): 399⁃406. |
47 | SONMEZ F O, HAHN H T. Modeling of Heat Transfer and Crystallization in Thermoplastic Composite Tape Placement Process[J]. Journal of Thermoplastic Compo⁃site Materials, 1997, 10(3): 198⁃240. |
48 | VELISARIS C N, SEFERIS J C. Crystallization Kinetics of Polyetheretherketone (PEEK) Matrices[J]. Polymer Engineering & Science, 1986, 26(22): 1 574⁃1 581. |
49 | TIERNEY J J, GILLESPIE JR J W. Crystallization Kinetics Behavior of PEEK Based Composites Exposed to High Heating and Cooling Rates[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(5): 547⁃558. |
50 | 马全胜, 王宝铭. 复合材料用高性能热塑性树脂最新进展[J]. 玻璃钢, 2017(3):25⁃30. |
MA Q S, WANG B M. The Latest Development of High Performance Thermoplastic Resins for Composite Materials[J]. Fiber Reinforced Plastics, 2017(3):25⁃30. | |
51 | 迪力穆拉提·阿卜力孜,段玉岗,李涤尘,等. 树脂基复合材料原位固化制造技术概述[J]. 材料工程, 2011(10): 84⁃90, 96. |
ABULIZI D, DUAN Y G, LI D C, et al. Overview of In⁃Situ Curing Manufacturing Technology for Resin Matrix Composites[J]. Journal of Materials Engineering, 2011(10): 84⁃90, 96. | |
52 | BEYELER E, PHILLIPS W, GUCERI S I. Experimental Investigation of Laser⁃Assisted Thermoplastic Tape Consolidation[J]. Journal of Thermoplastic Composite Materials, 1988, 1(1): 107⁃121. |
53 | AGARWAL V, GUCERI S I, CULLOUGH R L, et al. Thermal Characterization of The Laser⁃Assisted Consolidation Process[J]. Journal of Thermoplastic Compo⁃site Materials, 1992, 5(2): 115⁃135. |
54 | ROSSELLI F, SANTARE M H, GUCERI S I. Effects of Processing on Laser Assisted Thermoplastic Tape Consolidation[J]. Composites Part A: Applied Science and Manufacturing, 1997, 28(12): 1 023⁃1 033. |
55 | QUADRINI F, SQUEO E A, PROSPERI C. Diode Laser Assisted Filament Winding of Thermoplastic Matrix Composites[J]. Materials, 2010, 3(1): 563⁃571. |
56 | DELL'ANNO G, PARTRIDGE I, CARTIE D, et al. Automated Manufacture of 3D Reinforced Aerospace Composite Structures[J]. International Journal of Structural Integrity, 2012, 3(1):22⁃40. |
57 | AUGEST Z, OSTRANDER G, MICHASIOW J, et al. Recent Developments in Automated Fiber Placement of Thermoplastic Composites[J]. SAMPE J, 2014, 50(2): 30⁃37. |
58 | BANDARU A K, CLANCY G, PEETERS D, et al. Properties of a Thermoplastic Composite Skin⁃Stiffener Interface in a Stiffened Structure Manufactured by Laser⁃Assisted Tape Placement with In Situ Consolidation[J]. Composite Structures, 2019, 214: 123⁃131. |
59 | 徐小伟,李 楠,杨绍昌.自动铺带工艺参数对复合材料性能的影响[J].中国高新技术企业,2016(1):63⁃64. |
XU X W, LI N, YANG S C. The Effect of Automatic Tape Laying Process Parameters on the Properties of Composite Materials[J]. China High⁃Tech Enterprises, 2016(1):63⁃64. | |
60 | 张 洋,姚 锋,郑广强,等. 自动铺丝成型中的铺放温度控制技术研究[J]. 科技与创新, 2019(2): 1⁃2, 5. |
ZHANG Y, YAO F, ZHENG G Q, et al. Research on Laying Temperature Control Technology in Automatic Laying Forming [J]. Science Technology and Innovation, 2019(2): 1⁃2, 5. | |
61 | 王 静,闫宝瑞,燕夏婧,等. 自动铺放温度场模拟及黏合点温度影响因素研究[J]. 塑料工业, 2019, 47(3): 38⁃42, 78. |
WANG J, YAN B R, YAN X J, et al. Temperature Field Simulation of Automatic Tape Placement and Influence Factors of Bonding Point Temperature[J]. China Plastics Industry, 2019, 47(3): 38⁃42, 78. | |
62 | 宋清华. 热塑性复合材料自动铺放过程温度场分析及构件性能研究[D]. 南京: 南京航空航天大学, 2016. |
63 | 高士杰. PEEK 热塑性复合材料纤维铺放工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
64 | 沈 镇, 秦滢杰, 陈书华, 等. 炭纤维/聚醚醚酮复合材料的激光原位成型工艺探究[J]. 固体火箭技术, 2019 (2): 229⁃233. |
SHEN Z, QIN Y J,CHEN S H, et al. Study on the Laser In⁃Situ Winding Process of Carbon Fiber Reinforced PEEK Composite. Journal of Solid Rocket Technology, 2019 (2): 229⁃233. | |
65 | WANG X F, LOU D Y S. Simple Thermal Model for Online Laser Curing of Thermoset Composites in Filament Winding[J]. International Journal of Energy Research, 2003, 27(4): 377⁃388. |
66 | SONMEZ F,HAHN T,AKBULUT M. Analysis of Process⁃Induced Residual Stresses in Tape Placement[J]. Journal of Thermoplastic Composite Materials, 2002, 15(6): 525⁃544. |
67 | HOSSEINI S M A, BARAN I, AKKERMAN R. Thermal Modeling Strategies for Laser Assisted Tape Winding (LATW) Process[C]. Proceedings of 21st International Conference on Composite Materials. 2017. |
68 | 宣佳锋,罗积军,徐 军,等.基于ANSYS的激光对碳纤维复合材料作用的仿真研究[J].西安邮电学院学报,2011,16(S2):11⁃14. |
XUAN J F, LUO J J, XU J,et al. Simulation Study on the Effect of Laser on Carbon Fiber Composite Materials Based on ANSYS[J]. Journal of Xi'an University of Posts and Telecommunications, 2011, 16(S2): 11⁃14. | |
69 | 宋清华,肖 军,文立伟,等.热塑性复合材料自动铺放过程中温度场研究[J].材料工程,2018,46(1):83⁃91. |
SONG Q H, XIAO J, WEN L W, et al. Temperature Field During Automated Fiber Placement for Thermoplastic Composite[J]. Journal of Materials Engineering, 2018, 46(1): 83⁃91. |
[1] | 冯冰涛, 王晓珂, 张信, 孙国华, 汪殿龙, 侯连龙, 马劲松. 连续碳纤维增强热塑性复合材料制备与应用研究进展[J]. 中国塑料, 2022, 36(7): 165-173. |
[2] | 宋银宝, 杨建军, 李传敏. PDMS/SiC功能梯度复合材料性能与制造精度研究[J]. 中国塑料, 2022, 36(7): 30-36. |
[3] | 李凯泽, 辛勇. 改性碳纳米管增强热塑性聚氨酯复合材料的性能研究[J]. 中国塑料, 2022, 36(6): 1-5. |
[4] | 杨小龙, 陈文静, 李永青, 闫晓堃, 王修磊, 谢鹏程, 马秀清. 导电型聚合物/石墨烯复合材料的研究进展[J]. 中国塑料, 2022, 36(6): 165-173. |
[5] | 王轲, 龙春光. PE⁃UHMW/海泡石纤维复合材料的力学性能与摩擦学性能研究[J]. 中国塑料, 2022, 36(5): 19-23. |
[6] | 陈胜, 梁颖超, 吴方娟, 方辉, 范新凤, 陈晖, 王永刚. 聚酰胺6/双向经编玻璃纤维复合材料的制备及其界面改性研究[J]. 中国塑料, 2022, 36(5): 24-28. |
[7] | 雷经发, 沈强, 刘涛, 孙虹, 尹志强. 熔融沉积工艺参数对热塑性聚氨酯弹性体静动态力学性能的影响[J]. 中国塑料, 2022, 36(5): 29-35. |
[8] | 谭磊, 黄兴元, 王涵, 潘留雯. 热风熔融废旧塑料造粒机熔融室温度场分析[J]. 中国塑料, 2022, 36(4): 149-157. |
[9] | 刘文, 师文钊, 刘瑾姝, 陆少锋, 周红娟. 电致形状记忆复合材料研究进展[J]. 中国塑料, 2022, 36(4): 175-189. |
[10] | 阮芳涛, 夏成龙, 张宝根, 曹叶, 刘志, 徐珍珍, 章劲草. 芳纶包覆碳纤维增强环氧树脂的轴向压缩性能研究[J]. 中国塑料, 2022, 36(4): 19-23. |
[11] | 彭博, 肖运彬, 顾家宝, 陈梓钧, 唐雁煌, 朱刚, 徐焕翔. 聚合物/石墨烯复合材料制备与性能研究进展[J]. 中国塑料, 2022, 36(4): 190-197. |
[12] | 李素圆, 刘会鹏, 龚舜, 黄国桃, 李玉才, 吴鑫, 邓建平, 潘凯. 热塑性聚酰胺弹性体改性EVA复合发泡材料的制备及性能表征[J]. 中国塑料, 2022, 36(4): 6-14. |
[13] | 宋立健, 张有忱, 左夏华, 张政和, 安瑛, 杨卫民, 谭晶, 程礼盛. 自组装单分子层调控界面热输运的研究进展[J]. 中国塑料, 2022, 36(4): 60-69. |
[14] | 何毅, 赵广慧. 复合材料增强修复油气管道的研究进展[J]. 中国塑料, 2022, 36(4): 70-82. |
[15] | 李泽洋, 岑兰, 陈胜, 陈伟杰, 杜兵华, 张二帅. 羧基丁腈橡胶/PA12热塑性弹性体的制备及性能研究[J]. 中国塑料, 2022, 36(3): 15-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||