
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (9): 111-121.DOI: 10.19491/j.issn.1001-9278.2022.09.016
收稿日期:
2022-05-31
出版日期:
2022-09-26
发布日期:
2022-09-26
通讯作者:
陈少军(1978—),教授,主要开展智能高分子、生物降解高分子材料等领域的研究工作,chensj@szu.edu.cn基金资助:
MA Guocheng, HE Zhen, CHEN Shaojun()
Received:
2022-05-31
Online:
2022-09-26
Published:
2022-09-26
Contact:
CHEN Shaojun
E-mail:chensj@szu.edu.cn
摘要:
介绍了醋酸纤维素的生物降解、水解、光解的降解机理与研究现状,并对影响醋酸纤维素降解速率的因素进行了探究。从现有研究中可知,影响醋酸纤维素降解速率的主要因素为醋酸纤维素自身的分子结构(如取代度、取代度分布及结晶性等),物理改性、化学改性及增塑改性会通过改变醋酸纤维素的分子结构,进而影响醋酸纤维素的降解性能。最后,总结了醋酸纤维的应用领域,并做出了展望。
中图分类号:
马国成, 何圳, 陈少军. 醋酸纤维素的降解性研究进展[J]. 中国塑料, 2022, 36(9): 111-121.
MA Guocheng, HE Zhen, CHEN Shaojun. Research progress in degradability of cellulose acetate[J]. China Plastics, 2022, 36(9): 111-121.
1 | GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made [J]. Science Advances, 2017, 3(7). |
2 | TU H, ZHU M X, DUAN B, et al. Recent progress in high⁃strength and robust regenerated cellulose materials [J]. Advanced Materials, 2021, 33(28):2000682. |
3 | 陈科, 曾智文, 曾琦斐. 国内外新型可降解塑料研究进展[J].塑料科技, 2021, 49(11): 110⁃113. |
CHEN K, ZENG Z W, ZENG Q F.Research progress of new degradable plastics at home and abroad[J]. Plastics Science and Technology, 2021, 49(11): 110⁃113. | |
4 | 刁晓倩, 翁云宣, 宋鑫宇,等. 国内外生物降解塑料产业发展现状 [J]. 中国塑料, 2020, 34(5): 123⁃135. |
DIAO X Q, WENG Y X, SONG X Y,et al. Current development situation of biodegradable plastic industry in china and abroad [J]. China Plastics, 2020, 34(5): 123⁃135. | |
5 | 江洪, 王予典. 国外可降解塑料研究及应用进展 [J]. 新材料产业, 2021, (6): 10⁃4. |
6 | 艾瑞咨询.中国可降解材料市场研究报告[R]. 2022:26⁃28. |
7 | STICKLEN M B. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol [J]. Nature Reviews Genetics, 2008, (9): 443. |
8 | 付时雨. 纤维素的研究进展 [J]. 中国造纸, 2019, 38(6): 54⁃64. |
FU Y S. Progress in cellulose research[J]. China Pulp & Paper, 2019, 38(6): 54⁃64. | |
9 | LEE S Y, CHO M S, NAM J D, et al. Melting processing of biodegradable cellulose diacetate/starch composites [J]. Macromolecular Symposia, 2006, 242: 126⁃130. |
10 | 高立斌, 张素英, 史晟, 等. 醋酸纤维素的制备及其结构与性能 [J]. 应用化工, 2020, 49(1): 55⁃63. |
GAO L B, ZHANG S Y, SHI S, et al. Synthesis,structure and properties of cellulose acetate [J]. Applied Chemi⁃cal Industry, 2020, 49(1): 55⁃63. | |
11 | 陆帅羽, 唐静文, 张玥,等. 醋酸纤维素的制备及其可纺性研究 [J]. 合成纤维, 2015, 44(12): 5⁃9. |
LU S Y, TANG J W, ZHANG Y, et al. Research on cellulose acetate preparation and its spinnability [J]. Synthetic Fiber in China, 2015, 44(12): 5⁃9. | |
12 | 马佳泰. 国产烟用二醋酸纤维素丝束规格发展概述 [J]. 广东化工, 2020, 47(3): 98,107. |
MA J T. Overview of the development of domestic cellulose fiber specifications[J]. Guangdong Chemical Industry, 2020, 47(3): 98,107. | |
13 | ACH A. Biodegradable plastics based on cellulose⁃acetate [J]. Journal of Macromolecular Science⁃Pure and Applied Chemistry, 1993, A30(9/10): 733⁃740. |
14 | KHOSHNEVISAN K, MALEKI H, SAMADIAN H, et al. Cellulose acetate electrospun nanofibers for drug delivery systems: Applications and recent advances [J]. Carbohydrate Polymers, 2018, 198: 131⁃141. |
15 | OZCALIK O, TIHMINLIOGLU F. Barrier properties of corn zein nanocomposite coated polypropylene films for food packaging applications [J]. Journal of Food Engineering, 2013, 114(4): 505⁃513. |
16 | 周慧敏, 鲁杰, 程意, 等. 醋酸纤维素的改性及应用研究进展 [J]. 林产化学与工业, 2020, 40(4): 1⁃8. |
ZHOU H M, LU J, CHENG Y, et al. Research progress on modification and application of cellulose acetate[J]. Chemistry and Industry of Forest Products, 2020, 40(4): 1⁃8. | |
17 | 于跃, 张剑. 纤维素酶降解纤维素机理的研究进展 [J]. 化学通报, 2016, 79(2): 118⁃122,128. |
YU Y, ZHANG J. Research progress in cellulose degradation by cellulase [J]. Chemistry, 2016, 79(2): 118⁃122,128. | |
18 | HERMAN, VAN, TILBEURGH, et al. Limited proteolysis of the cellobiohydrolase I fromTrichoderma reesei [J]. FEBS Letters, 1986. |
19 | JEFFRIES. Enzymatic hydrolysis of the walls of yeast cells and germinated fungal spores [J]. Biochimica Et Biophysica Acta, 1977, 499(1): 10⁃23. |
20 | ALTANER C, SAAKE B, PULS H. Specificity of an Aspergillus niger esterase deacetylating cellulose acetate [J]. Cellulose, 2003, 10(1): 85⁃95. |
21 | GOW L A, WOOD T M. Breakdown of crystalline cellulose by synergistic action between cellulase components from clostridium⁃thermocellum and trichoderma⁃koningii [J]. Fems Microbiology Letters, 1988, 50(2/3): 247⁃252. |
22 | JUTURU V, WU J C. Microbial cellulases: Enginee⁃ring, production and applications [J]. Renewable & Sustainable Energy Reviews, 2014, 33: 188⁃203. |
23 | 余兴莲, 王丽, 徐伟民. 纤维素酶降解纤维素机理的研究进展 [J]. 宁波大学学报(理工版), 2007, (1): 78⁃82. |
YU X L, WANG L, XU W M. Progress in the studies of cellulose degradation by cellulase[J]. Journal of Ningbo University (Natural Science & Engineering), 2007, (1): 78⁃82. | |
24 | SHANG B Z, CHU J W. Kinetic modeling at single⁃molecule resolution elucidates the mechanisms of cellulase synergy [J]. Acs Catalysis, 2014, 4(7): 2 216⁃2 225. |
25 | WOODARD L N, GRUNLAN M A. Hydrolytic degradation and erosion of polyester biomaterials [J]. Acs Macro Letters, 2018, 7(8): 976⁃982. |
26 | LYU S, SPARER R, UNTEREKER D. Analytical solutions to mathematical models of the surface and bulk erosion of solid polymers [J]. Journal of Polymer Science Part B⁃Polymer Physics, 2005, 43(4): 383⁃397. |
27 | LAYCOCK B, NIKOLIC M, COLWELL J M, et al. Lifetime prediction of biodegradable polymers [J]. Progress in Polymer Science, 2017, 71: 144⁃189. |
28 | 叶科丽, 唐艳军, 傅丹宁, 等. 纤维素水解制备葡萄糖的研究进展 [J]. 中国造纸学报, 2020, 35(2): 81⁃88. |
YE K L, TANG Y J, FU D N, et al. Research progress in preparation of glucose by hydrolysis of cellulose [J]. Transactions of China Pulp and Paper, 2020, 35(2): 81⁃88. | |
29 | 张欢欢. 固体酸催化纤维素水解制备葡萄糖的工艺研究及糖液食用安全性评价[D].重庆:西南大学, 2017. |
30 | 乔颖, 腾娜, 翟承凯, 等. 化学法催化纤维素高效水解成糖 [J]. 化学进展, 2018, 30(9): 1 415⁃1 423. |
QIAO Y, TENG N, ZHAI C K, et al. High efficient hydrolysis of cellulose into sugar by chemical catalytic method[J]. Progress in Chemistry, 2018, 30(9): 1 415⁃1 423. | |
31 | PULS J, WILSON S A, HOLTER D. Degradation of cellulose acetate⁃based materials: a review [J]. Journal of Polymers and the Environment, 2011, 19(1): 152⁃165. |
32 | ISHIGAKI T, SUGANO W, IKE M, et al. Effect of UV irradiation on enzymatic degradation of cellulose acetate [J]. Polymer Degradation and Stability, 2002, 78(3): 505⁃510. |
33 | KOMAREK R J, GARDNER R M, BUCHANAN C M, et al. Biodegradation of radiolabeled cellulose⁃acetate and cellulose propionate [J]. Journal of Applied Polymer Science, 1993, 50(10): 1 739⁃1 746. |
34 | MORIYOSHI K, KOMA D, YAMANAKA H, et al. Expression and characterization of a thermostable acetylxylan esterase from caldanaerobacter subterraneus subsp tengcongensis involved in the degradation of insoluble cellulose acetate [J]. Bioscience Biotechnology and Biochemistry, 2013, 77(12): 2 495⁃2 498. |
35 | HASKE⁃CORNELIUS O, PELLIS A, TEGL G, et al. Enzymatic systems for cellulose acetate degradation [J]. Catalysts, 2017,7: doi:10.3390/catal7100287. |
36 | GU J D, EBERIEL D, MCCARTHY S P, et al. Degradation and mineralization of cellulose acetate in simulated thermophilic compost environments [J]. Journal of Polymers & the Environment, 1993,1: 281⁃291. |
37 | TAKEDA N, ENOMOTO⁃ROGERS Y, TAKEMURA A, et al. Synthesis and enzymatic degradation of randomly substituted 2,3,6⁃O⁃cellulose acetate and regioselectively substituted 2,3⁃O⁃cellulose acetate [J]. Polymer Degradation and Stability, 2016, 129: 125⁃132. |
38 | 杨丽芳. 超低浓度硫酸催化纤维素水解实验研究 [D].北京:北京化工大学, 2011. |
39 | 田龙, 马晓建. 丙酸预处理小麦秸秆的纤维素水解动力学 [J]. 农业机械学报, 2012, 43(9): 111⁃115. |
TIAN L, MA X J. Kinetics hydrolysis of cellulose of wheat straw pretreated with propionic acid [J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(9): 111⁃115. | |
40 | LACERDA T M, ZARNBON M D, FROLLINI E. Oxalic acid as a catalyst for the hydrolysis of sisal pulp [J]. Industrial Crops and Products, 2015, 71: 163⁃172. |
41 | 赵博, 胡尚连, 龚道勇, 等. 固体酸催化纤维素水解转化葡萄糖的研究进展 [J]. 化工进展, 2017, 36(2): 555⁃567. |
ZHAO B, HU S L, GONG D Y, et al. New advances on hydrolysis of cellulose to glucose by solid acid[J]. Chemical Industry and Engineering Progress, 2017, 36(2): 555⁃567. | |
42 | 廖传华, 张龙飞, 陈海军, 等. 纤维素超临界水水解技术研究进展 [J]. 林业科技开发, 2015, 29(6): 7⁃11. |
43 | 张文娟, 王东伟, 王善元. 二醋酸纤维素的碱降解性能 [J]. 纤维素科学与技术, 2008, (1): 45⁃49. |
ZHANG W J, WANG D W, WANG S Y. Degradation properties of alkali⁃treated diacetate fiber [J]. Journal of Cellulose Science and Technology, 2008, (1): 45⁃49. | |
44 | 张玉军, 王继华, 巩桂芬, 等. 用植物纤维素制备还原糖的方法及研究进展 [J]. 化学与黏合, 2016, 38(4): 297⁃299. |
ZHANG Y J, WANG J H, GONG G F, et al. Methods and research progress on preparation of reducing sugar by using pant cellulose[J]. Chemistry and Adhesion, 2016, 38(4): 297⁃299. | |
45 | 牟晓红, 赵成赟. 超临界水预处理花生壳及混合菌种发酵制备乙醇 [J]. 石化技术与应用, 2016, 34(2): 118⁃120. |
46 | Abaide EDERSON R, Mortari Sérgio R, Ugalde Gustavo, et al. Subcritical water hydrolysis of rice straw in a semi⁃continuous mode [J]. Journal of Cleaner Production, 2019,209:386⁃397. |
47 | 汪楠. 离子液体中金属离子助催化酸水解竹粉制备还原糖的研究 [D].重庆:重庆大学, 2015. |
48 | 姜沁君, 阳志高. 超声波、微波促进纤维素的水解 [J]. 中国教育技术装备, 2016, (1): 131⁃132. |
49 | 田蕾, 付秀丽, 丁德胜,等. 超声波辅助酶法水解米渣纤维制糖 [J]. 食品工业, 2019, 40(3): 103⁃107. |
TIAN L, FU X L, DING D S, et al. Ultrasound assisted enzymatic hydrolysis of rice residue cellulose[J]. The Food Industry, 2019, 40(3): 103⁃107. | |
50 | 屈浩楠, 暴冲, 马一鸣, 等. 负载离子液体的生物质炭磺酸催化水解纤维素 [J]. 化学研究, 2018, 29(5): 500⁃450,521. |
QU H N, BAO C, MA Y M, et al. Biomass carbon sulfonic acid supported with ionic liquid catalyzed⁃hydrolysis of cellulose [J]. Chemical Research, 2018, 29(5): 500⁃450,521. | |
51 | YANG X, MA J J, LING J, et al. Cellulose acetate⁃based SiO2/TiO2 hybrid microsphere composite aerogel films for water⁃in⁃oil emulsion separation [J]. Applied Surface Science, 2018, 435: 609⁃616. |
52 | 钱怡帆, 周堂, 张礼颖,等. 聚丙烯腈/醋酸纤维素/TiO2复合纳米纤维膜的制备及其光催化降解性能 [J]. 纺织学报, 2020, 4105: 8⁃14. |
QIAN Y F, ZHOU T, ZHANG L Y, et al. Preparation of polyacrylonitrile/cellulose acetate/TiO2 composite nanofiber membrane and its photocatalytic degradation performance [J]. Journal of Textile Research, 2020, 4105: 8⁃14. | |
53 | VAN DER ZEE M, STOUTJESDIJK J H, FEIL H, et al. Relevance of aquatic biodegradation tests for predicting degradation of polymeric materials during biological solid waste treatment [J]. Chemosphere, 1998, 36(3): 461⁃473. |
54 | GARDNER R M, BUCHANAN C M, KOMAREK R, et al. Compostability of cellulose⁃acetate films [J]. Journal of Applied Polymer Science, 1994, 52(10): 1 477⁃1 488. |
55 | SAMIOS E, DART R K, DAWKINS J V. Preparation, characterization and biodegradation studies on cellulose acetates with varying degrees of substitution [J]. Polymer, 1997, 38(12): 3 045⁃3 054. |
56 | GOSWAMI M, DAS A M. Synthesis and characterization of a biodegradable cellulose acetate⁃montmorillonite composite for effective adsorption of eosin Y [J]. Carbohydrate Polymers, 2019, 206: 863⁃872. |
57 | GHAFFARIAN V, MOUSAVI S M, BAHREINI M, et al. Preparation and characterization of biodegradable blend membranes of PBS/CA [J]. Journal of Polymers and the Environment, 2013, 21(4): 1 150⁃1 157. |
58 | KIM Y H, RI J H, PAK I H, et al. Biodegradable hot melt adhesive based on partially saponified polyvinyl acetate/cellulose diacetate blend [J]. Journal of Applied Polymer Science, 2021, 138(35): 075301. |
59 | BAHREMAND A H, MOUSAVI S M, AHMADPOUR A, et al. Biodegradable blend membranes of poly (butylene succinate)/cellulose acetate/dextran: Preparation, characterization and performance [J]. Carbohydrate Polymers, 2017, 173: 497⁃507. |
60 | WU C S. Characterization of cellulose acetate⁃reinforced aliphatic aromatic copolyester composites [J]. Carbohydrate Polymers, 2012, 87(2): 1 249⁃1 256. |
61 | IMRE B, KISS E Z, DOMJAN A, et al. Ring⁃opening polymerization of epsilon⁃caprolactone from cellulose acetate by reactive processing [J]. Cellulose, 2021, 28(14): 9 103⁃9 116. |
62 | ZHU J A, HANG H C, WANG W T, et al. Cellulose diacetate⁃g⁃poly(p⁃dioxanone) co⁃polymer: synthesis, properties and microsphere preparation [J]. Journal of Biomaterials Science⁃Polymer Edition, 2011, 22(8): 981⁃999. |
63 | WU C S. Mechanical properties, biocompatibility, and biodegradation of cross⁃linked cellulose acetate⁃reinforced polyester composites [J]. Carbohydrate Polymers, 2014, 105: 41⁃48. |
64 | ZAREI A, GHAFFARIAN V. Preparation and characterization of biodegradable cellulose acetate⁃starch membrane [J]. Polymer⁃Plastics Technology and Engineering, 2013, 52(4): 387⁃392. |
65 | QUINTANA R, PERSENAIRE O, LEMMOUCHI Y, et al. Enhancement of cellulose acetate degradation under accelerated weathering by plasticization with eco⁃friendly plasticizers [J]. Polymer Degradation and Stability, 2013, 98(9): 1 556⁃1 562. |
66 | MAYER J M, ELION G R, BUCHANAN C M, et al. Biodegradable blends of cellulose⁃acetate and starch ⁃ production and properties [J]. Journal of Macromolecular Science⁃Pure and Applied Chemistry, 1995, A32(4): 775⁃785. |
67 | 俞文骥, 邹耀邦, 张梅,等. 非邻苯类环保增塑剂增塑二醋酸纤维素的研究 [J]. 中国塑料, 2016, 30(12): 81⁃85. |
YU W J, ZOU Y B, ZHANG M, et al. Study of cellulose acetate plasticized with phthalate free plasticizers [J]. China Plastics, 2016, 30(12): 81⁃85. | |
68 | 张全平. 柠檬酸酯增塑剂增塑醋酸纤维素的研究 [D]. 湘潭:湘潭大学, 2011. |
69 | 沈洁, 王家俊, 刘幸幸, 等. 原花青素/醋酸纤维素可降解包装薄膜的结构与抗氧化性能 [J]. 浙江理工大学学报, 2011, 28(6): 865⁃870. |
SHEN J, WANG J J, LIU X X, et al. The research on the structures and antioxidantion properties of procyanidins/cellulose acetate packaging membrane [J]. Periodicals Agency of Zhejiang Sci⁃Tech University, 2011, 28(6): 865⁃870. | |
70 | CLARO P I C, NETO A R S, BIBBO A C C, et al. Biodegradable blends with potential use in packaging: a comparison of PLA/chitosan and PLA/cellulose acetate films [J]. Journal of Polymers and the Environment, 2016, 24(4): 363⁃371. |
71 | CHEN Q Q, CHANG C Y, ZHANG L N. Surface engineering of cellulose film with myristic acid for high strength, self⁃cleaning and biodegradable packaging materials [J]. Carbohydrate Polymers, 2021, 269: 10.1016/j.carbpol.2021.118315. |
72 | LAROQUE D A, DE ARAGAO G M F, DE ARAUJO P H H, et al. Active cellulose acetate⁃carvacrol films: Antibacterial, physical and thermal properties [J]. Packaging Technology and Science, 2021, 34(8): 463⁃474. |
73 | WANG L, YANG T, ZHAO G. An injectable cellulose acetate/sodium alginate hydrogels⁃loaded laponite microsphere as a potential wound healing in nursing care in perioperative period [J]. Materials Research Express, 2022, 9(3): 035402. |
74 | NASERI⁃NOSAR M, SALEHI M, HOJJATI⁃EMAMI S. Cellulose acetate/poly lactic acid coaxial wet⁃electrospun scaffold containing citalopram⁃loaded gelatin nanocarriers for neural tissue engineering applications [J]. International Journal of Biological Macromolecules, 2017, 103: 701⁃708. |
75 | TAHAZADEH S, MOHAMMADI T, TOFIGHY M A, et al. Development of cellulose acetate/metal⁃organic framework derived porous carbon adsorptive membrane for dye removal applications [J]. Journal of Membrane Science, 2021, 638: 10.1016/j.memsci.2021.119692. |
76 | SELVAKUMAR M, BHAT D K. LiClO4⁃doped cellulose acetate as biodegradable polymer electrolyte for supercapacitors [J]. Journal of Applied Polymer Science, 2008, 110(1): 594⁃602. |
77 | BAI Y, LIU Y, WANG Q. Cellulose acetate for shape memory polymer: natural, simple, high performance, and recyclable [J]. Advances in Polymer Technology, 2018, 37(3): 869⁃877. |
78 | 朱天戈, 杨勇. 可生物降解塑料行业及标准化现状浅析 [J]. 新材料产业, 2021, (6): 21⁃25. |
79 | 张静, 薛朝华, 马宏瑞, 等. CA@CS⁃MMT复合纳米纤维的制备及对Cr(Ⅲ)的吸附 [J]. 精细化工, 2021, 38(3): 504⁃511. |
ZHANG J, XUE C h, MA H r,et al. Fabrication of cellulose acetate@chitosan⁃montmorillonite composite nanofibers and its adsorption of Cr(Ⅲ) [J]. Fine Chemicals, 2021, 38(3): 504⁃511. | |
80 | AOKI D, TERAMOTO Y, NISHIO Y. SH⁃containing cellulose acetate derivatives: Preparation and characterization as a shape memory⁃recovery material [J]. Biomacromolecules, 2007, 8(12): 3 749⁃3 757. |
[1] | 张林, 夏章川, 何亚东, 信春玲, 王瑞雪, 任峰. 等离子体射流载气流量大小对玻璃纤维改性效果影响的研究[J]. 中国塑料, 2022, 36(9): 7-15. |
[2] | 马超, 马兰荣, 魏辽, 尹慧博, 林祥. 聚乙醇酸材料的加工改性及其水下降解特性的研究进展[J]. 中国塑料, 2022, 36(9): 74-84. |
[3] | 宋丹阳, 郑红娟, 李一龙. 聚乳酸基油水分离材料研究进展[J]. 中国塑料, 2022, 36(9): 187-192. |
[4] | 杨超永, 郭金强, 王富玉, 张玉霞. 高性能塑料薄膜制备方法及改性研究进展[J]. 中国塑料, 2022, 36(9): 167-179. |
[5] | 余大荣, 辛勇. 超高分子量聚乙烯改性研究进展[J]. 中国塑料, 2022, 36(8): 135-145. |
[6] | 喻九阳, 王众浩, 陈琦, 夏亚忠. 基于阀体制造的先进树脂基复合材料性能研究[J]. 中国塑料, 2022, 36(8): 16-22. |
[7] | 陈佰全, 郑友明, 田际波, 张磊, 王金松, 林夏洁, 段亚鹏. 高含量玻璃纤维增强阻燃聚酰胺材料的制备与性能[J]. 中国塑料, 2022, 36(8): 42-48. |
[8] | 熊一鸣, 宋季岭, 秦舒浩, 龙雪彬, 鲁显睿. 改性热塑性淀粉的制备及其与PBAT复合薄膜的性能[J]. 中国塑料, 2022, 36(8): 69-72. |
[9] | 林文, 赵晶晶, 苏婷婷, 王战勇. 聚苯乙烯生物降解研究进展[J]. 中国塑料, 2022, 36(7): 143-149. |
[10] | 冯凯, 李永青, 马秀清, 韩颖. 聚甲醛增韧改性的研究进展及应用[J]. 中国塑料, 2022, 36(7): 157-164. |
[11] | 宋进, 徐航, 邹威, 王洪, 张晨. 表面羧基化聚丙烯酸酯多孔微球的制备及其铜离子吸附性能研究[J]. 中国塑料, 2022, 36(7): 8-13. |
[12] | 陈轲, 刘鸣飞, 赵彪, 潘凯. 有机硅改性高分子材料阻燃及耐烧蚀性能研究进展[J]. 中国塑料, 2022, 36(6): 149-154. |
[13] | 吴雄杰, 陶强, 朱东波, 程劲松, 储雨, 许磊. 食品接触用生物降解塑料购物袋材质鉴别与总迁移量研究[J]. 中国塑料, 2022, 36(5): 127-132. |
[14] | 邓天翔, 许利娜, 李守海, 张燕, 姚娜, 贾普友, 丁海阳, 李梅. PVC接枝改性及交联改性方法研究进展[J]. 中国塑料, 2022, 36(5): 140-148. |
[15] | 王镕琛, 张恒, 孙焕惟, 段书霞, 秦子轩, 李晗, 朱斐超, 张一风. 医疗卫生用聚乳酸非织造材料的制备及其亲水改性研究进展[J]. 中国塑料, 2022, 36(5): 158-166. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||