
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
›› 2023, Vol. 37 ›› Issue (4): 112-120.
李玉峰1,赵阳2,刘丽爽2,冯峰3,高晓辉1,何锡凤1
收稿日期:
2022-11-01
修回日期:
2022-11-07
出版日期:
2023-04-26
发布日期:
2023-04-26
基金资助:
Received:
2022-11-01
Revised:
2022-11-07
Online:
2023-04-26
Published:
2023-04-26
摘要: 综述了近些年来使用乳液聚合法制备聚合物/石墨烯复合材料的国内外研究现状,详细阐述了制备聚合物/石墨烯复合材料的乳液聚合方法,总结了乳液聚合法中聚合物的种类和石墨烯的改性方法以及复合材料的性能改善,并对乳液聚合法制备聚合物/石墨烯复合材料的应用领域和研究方向进行了展望。
李玉峰 赵阳 刘丽爽 冯峰 高晓辉 何锡凤. 乳液聚合法制备聚合物/石墨烯复合材料研究进展[J]. , 2023, 37(4): 112-120.
[1] Jeffrey R Potts, Daniel R Dreyer, Christopher W Bielawski, et al. Graphene-based polymer nanocomposites [J]. Polymer, 2011, 52(1): 5-25.[2] Zhang Jiali, Yang Haijun, Shen Guangxia, et al. Reduction of graphene oxide via L-ascorbic acid [J]. Chemical communications, 2010, 46(7): 1112-1114.[3] MAO Henan, WANG Xiaogong. Use of in-situ polymerization in the preparation of graphene/polymer nanocomposites [J]. New Carbon Materials, 2020, 35(4): 336-343.[4] Peng Rengui, Wang Yuanzhen, Wei Tang, et al. Progress in Imidazolium Ionic Liquids Assisted Fabrication of Carbon Nanotube and Graphene Polymer Composites [J]. Polymers, 2013, 5(2): 847-872.[5] Pham Viet Hung, Dang Thanh Truong, Hur Seung Hyun, et al. Highly conductive poly (methyl methacrylate) (PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction [J]. ACS applied materials & interfaces, 2012, 4(5): 2630-2306.[6] Yang Jintao, Yan Xiaohui, Wu Minjie, et al. Self-assembly between graphene sheets and cationic poly (methyl methacrylate) (PMMA) particles: preparation and characterization of PMMA/graphene composites [J]. Journal of Nanoparticle Research, 2012, 14(1): 1-9.[7] Mitsuyoshi Yamane, Yasemin Fadil, Masayoshi Tokuda, et al. Preparation of Methacrylate Polymer/Reduced Graphene Oxide Nanocomposite Particles Stabilized by Poly (ionic liquid) Block Copolymer via Miniemulsion Polymerization [J]. Macromolecular Rapid Communications, 2020, 41(18): 2000141.[8] Hu Huating, Wang Xianbao, Wang Jingchao, et al. Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization [J]. Chemical Physics Letters, 2010, 484(46): 247-253.[9] C. Nethravathi, Jacqueline T. Rajamathi, N. Ravishankar, et al. Graphite oxide-intercalated anionic clay and its decomposition to graphene-inorganic material nanocomposites [J]. Langmuir: the ACS journal of surfaces and colloids, 2008, 24(15): 8240-8244.[10] BERBER Hale, U?AR Ezgi, ?AH?NTüRK Utkan, et al. Synthesis and properties of waterborne few-layer graphene oxide/poly (MMA-co-BuA) nanocomposites by in situ emulsion polymerization [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2017, 531: 56-66.[11] Tapas Kuila, Saswata Bose, Partha Khanra, et al. Characterization and properties of in situ emulsion polymerized poly (methyl methacrylate)/graphene nanocomposites [J]. Composites Part A, 2011, 42(11): 1856-1861.[12] Ji Jingqi, Zhao Jianqing, Ke Yangchuan, et al. In situ fabrication of graphene-scaffold poly (acrylamide-acrylic acid-4-acryloylmorpholine) microspheres as a novel plugging agent for profile control [J]. Journal of Materials Science, 2020, 55(29): 14137-14152.[13] Samakande Austin, Sanderson Ronald D, Hartmann Patrice C, et al. Encapsulated clay particles in polystyrene by RAFT mediated miniemulsion polymerization[J]. Journal of Polymer Science Part A-Polymer Chemistry, 2008, 46(21):7114-7126.[14] Etmimi, H M, Sanderson, R D. New approach to the synthesis of exfoliated polymer/graphite nanocomposites by miniemulsion polymerization using functionalized graphene [J]. Macromolecules, 2011, 44(21): 8504-8515.[15] Dinh Le N M, Ramana Lakshmi N, Kuchel Rhiannon P, et al. Miniemulsion polymerization using carboxylated graphene quantum dots as surfactants: effects of monomer and initiator type [J]. POLYMER CHEMISTRY, 2020, 11(36): 5790-5799.[16] Oh Hyunwoo, Kim Youjin, Kim Jooheon, et al. Electrically conductive poly (methyl methacrylate)-reduced graphene oxide/poly(styrene-co-acrylonitrile) composite with double percolative architecture [J]. Organic Electronics, 2020, 85: 105877.[17] Zhang Lei, Ma Jianzhong, Lyu Bin, et al. Mitochondrial structure-inspired high specific surface area polymer microspheres by encapsulating modified graphene oxide nanosheets [J]. European Polymer Journal, 2020, 130: 109682.[18] Yue Lipei, Li Weidong, Cao Yingjie, et al. Core–Shell Composite Synthesized through In Situ Polymerization in Emulsion with High Electrical Conductivity Sensitive to Humidity [J]. Particle & Particle Systems Characterization, 2017, 34(5): 201600423, 2-8.[19] Zhou Jianhua, Zhao Jiaojiao, Li Hong, et al. Enhanced thermal properties for nanoencapsulated phase change materials with functionalized graphene oxide (FGO) modified PMMA [J]. Nanotechnology, 2020, 31(29): 295704.[20] Jiang Xueliang, Guo Wenwen, You Feng, et al. Enhancing the dielectric properties of polymethyl methacrylate by using low loading graphene encapsulated styrene-butyl acrylate copolymer microspheres [J]. Synthetic Metals, 2020, 259: 116229.[21] Huang Ying, Wang Xinlong, Jin Xiaoxun, et al. Study on the PMMA/GO nanocomposites with good thermal stability prepared by in situ Pickering emulsion polymerization [J]. Journal of Thermal Analysis and Calorimetry, 2014, 117(2): 755-763.[22] Wei Huan, Yang Wenbin, He Fangfang, et al. Core@double‐shell structured multifunctional phase change microcapsules based on modified graphene oxide Pickering emulsion [J]. International Journal of Energy Research, 2020, 45(2): 3257-3268.[23] Yu Fei, Feng Hengyu, Xiao Linghan, et al. Fabrication of graphene oxide microcapsules based on Pickering emulsions for self-healing water-borne epoxy resin coatings [J]. Progress in Organic Coatings, 2021, 155(5): 106221.[24] Zheng Fulin, Jiang Pingping, Hu Ling, et al. Functionalization of graphene oxide with different diisocyanates and their use as a reinforcement in waterborne polyurethane composites [J]. Journal of Macromolecular Science, Part A, 2019, 56(12): 1071-1081.[25] Gaffer Amany, Aman Delvin. Preparation and Characterization of Conductive Polymer/Reduced Graphite Oxide (RGO) Composite via Miniemulsion Polymerization [J]. Chemical and Process Engineering Research, 2015, 38(0): 35-39.[26] Zhang Tingting, Huang Wenbin, Zhang Nan, et al. Grafting of polystyrene onto reduced graphene oxide by emulsion polymerization for dielectric polymer composites: High dielectric constant and low dielectric loss tuned by varied grafting amount of polystyrene [J]. European Polymer Journal, 2017, 94: 196-207.[27] Tang Longcheng, Wan Yanjun, Yan Dong, et al. The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites [J]. Carbon, 2013, 60: 16-27.[28] Wang Haihua, He Yu, Fei Guiqiang, et al. Functionalizing graphene with titanate coupling agents as reinforcement for one-component waterborne poly(urethane-acrylate) anticorrosion coatings [J]. Chemical Engineering Journal, 2019, 359: 331-343.[29] Liu Haiteng, Pang Xiaoyan, Ding Wei, et al. Preparation of nano-SiO2 modified graphene oxide and its application in polyacrylate emulsion [J]. Materials Today Communications, 2021, 27: 102245.[30] Albert Emmellie Laura, Abdullah Che Azurahanim Che, Shiroshaki Yuki, et al. Synthesis and characterization of graphene oxide functionalized with magnetic nanoparticle via simple emulsion method [J]. Results in Physics, 2018, 11: 944-950.[31] Burja Klemen, ?egedin Urban, Skale Sa?a, et al. Improved anticorrosion properties of polyurethane coatings based on high-solids acrylics synthesized in a high pressure reactor [J]. Progress in Organic Coatings, 2015, 78: 275-286.[32] Dong Rui, Liu Lili. Preparation and properties of acrylic resin coating modified by functional graphene oxide [J]. Applied Surface Science, 2016, 368: 378-387.[33] 李全涛, 徐君庭, 徐祖顺,等. 改性石墨烯/丙烯酸酯乳液的合成与性能研究 [J]. 应用化工, 2019, 48(3): 501-505.[34] Lei Liang, Zhong Li, Lin Xiaoqiong, et al. Synthesis and characterization of waterborne polyurethane dispersions with different chain extenders for potential application in waterborne ink [J]. Chemical Engineering Journal, 2014, 253: 518-525.[35] Lei Liang, Xia Zhengbin, Zhang Li, et al. Preparation and properties of amino-functional reduced graphene oxide/waterborne polyurethane hybrid emulsions [J]. Progress in Organic Coatings, 2016, 97: 19-27.[36] Zheng Fulin, Jiang Pingping, Hu Ling, et al. Functionalization of graphene oxide with different diisocyanates and their use as a reinforcement in waterborne polyurethane composites [J]. Journal of Macromolecular Science, Part A, 2019, 56(12): 1071-1081.[37] Li Pengling, Ren Hui, Qiu Fengxian, et al. Preparation and Properties of Graphene Oxide-Modified Waterborne Polyurethane-Acrylate Hybrids [J]. Polymer-Plastics Technology and Engineering, 2014, 53(13): 1408-1416.[38] Yina Yuhua, Muhammada Yaseen,b , Zeng Xiang, et al. Synthesis and properties of octadecylamine-graphene oxide modied highlyhydrophobic waterborne polyurethane emulsion [J]. Progress in Organic Coatings, 2018, 125: 234-241.[39] 郭华超, 黄国家, 杨波, 邓伟, 李爽, 李悦.石墨烯/聚苯乙烯复合材料的研究进展及应用 [J].塑料, 2020, 49(1): 139-142+151.[40] Nutenki Rajender, Darapureddi Prabhakara Rao, Nayak Rati Ranjan, et al. Amphiphilic comb-like polymer-modified graphene oxide and its nanocomposite with polystyrene via emulsion polymerization [J]. Colloid and Polymer Science, 2018, 296(1): 133-144.[41] Zhao Yuan, Tang Guangshi, Yu Zhongzhen, et al. The effect of graphite oxide on the thermoelectric properties of polyaniline [J]. Carbon, 2012, 50(8): 3064-3073.[42] Imran Syed Muhammad, Kim YouNa, Shao Godlisten N, et al. Enhancement of electroconductivity of polyaniline/graphene oxide nanocomposites through in situ emulsion polymerization [J]. Journal of Materials Science, 2014, 49(3): 1328-1335.[43] Baniasadi Hossein, Ramazani Ahmad S A, Shohreh Mashayekhan, et al. Preparation of conductive polyaniline/graphene nanocomposites via in situ emulsion polymerization and product characterization [J]. Synthetic Metals, 2014, 196: 199-205.[44] Guo Tao, Li Hao, Ma Xiaohong, et al. Hyperbranched polyester modified graphene oxide on anti-corrosion performance of epoxy composite coatings for electric power system [J]. Plastics, Rubber and Composites, 2020, 49(6): 245-253.[45] Amani Mehdi, Shakeri Alireza. Synthesis and Characterization of Water-Based Epoxy-Acrylate/Graphene Oxide Decorated with Fe3O4 Nanoparticles Coatings and Its Enhanced Anticorrosion Properties [J]. Polymer-Plastics Technology and Materials, 2020, 59(17): 1910-1931.[46] 刘刚, 欧宝立, 赵欣欣,等. 共价功能化石墨烯超疏水防腐复合涂层材料的制备 [J]. 复合材料学报, 2021, 38(10): 3236-3246.[47] Kumar Mohan, Swamy B E, Kumara, M H, Asif Mohammed, et al. Preparation of alanine and tyrosine functionalized graphene oxide nanoflakes and their modified carbon paste electrodes for the determination of dopamine [J]. Applied Surface Science, 2017, 399: 411-419.[48] Luna Alan, Pruvost Mickael, Yuan Jinkai, et al. Giant Electrostrictive Response and Piezoresistivity of Emulsion Templated Nanocomposites [J]. Langmuir: the ACS journal of surfaces and colloids, 2017, 33(18): 4528-4536.[49] Liao Daogui, Guan Yupeng, He Yingying, et al. Pickering emulsion strategy for high compressive carbon aerogel as lightweight electromagnetic interference shielding material and flexible pressure sensor [J]. Ceramics International, 2021, 47(16): 23433-23443.[50] Acik Muge, Lee Geunsik, Mattevi Cecilia, et al. The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy [J]. Journal of physical chemistry C, 2011, 115(40): 19761-19781. [51] Dalal Jasvir, Lather Sushma, Gupta Anjli, et al. Reduced Graphene Oxide Functionalized Strontium Ferrite in Poly(3,4‐ethylenedioxythiophene) Conducting Network: A High‐Performance EMI Shielding Material [J]. Advanced Materials Technologies, 2019, 4(7): 1900023.[52] Bhardwaj Preetam, Grace Andrews Nirmala. Antistatic and microwave shielding performance of polythiophene-graphene grafted 3-dimensional carbon fibre composite [J]. Diamond & Related Materials, 2020, 106: 107871.[53] 张砚召, 马乔宇, 侯磊,等. 用于脑电图监测的聚丙烯酸共聚酯/石墨烯/织物复合电极的制备与性能 [J]. 中国塑料, 2020, 34(3): 7-13. |
[1] | 李家伟 张克宏 李文慧 郭星雨 丁宇. 聚羟基脂肪酸酯/茶粉复合材料的制备与性能研究[J]. , 2023, 37(6): 10-15. |
[2] | 张文睿 贾涵 张鑫 潘亚敏 刘春太 申长雨 刘宪虎. 超高分子量聚乙烯薄膜制备方法与应用[J]. , 2023, 37(5): 1-8. |
[3] | 王怡佳 张燕 陈婷 刘继延 刘学清. 聚氨酯/甲基二苯基氧化膦的冷结晶及阻燃性能研究[J]. , 2023, 37(5): 104-109. |
[4] | 邢利欣 任小龙 廖文靖 陈志平 冯羽风. 可生物降解双向拉伸聚乳酸薄膜成型技术研究进展[J]. , 2023, 37(4): 121-135. |
[5] | 管羽 付烨 翁云宣. 生物降解聚酯降解性能调控研究进展[J]. , 2023, 37(3): 103-112. |
[6] | 金清平, 刘运蝶. 纤维增强复合材料约束混凝土柱耐久性研究进展[J]. 中国塑料, 2023, 37(2): 121-128. |
[7] | 董竞辉, 桑晓明, 陈祯, 尹伟浩, 姜骞, 陈兴刚. 短切碳纤维对聚苯腈/碳纤维复合材料性能的影响[J]. 中国塑料, 2023, 37(2): 31-37. |
[8] | 李传敏, 杨建军, 李洋, 王洛唯. PDMS/SiC功能梯度复合材料3D打印主动混合喷头结构设计与工艺参数优化[J]. 中国塑料, 2023, 37(2): 71-76. |
[9] | 焦锐敏, 何小芳, 董青松, 王林, 曹新鑫. 共改性煤粉增强丁苯橡胶的硫化、力学和热稳定性能研究[J]. 中国塑料, 2023, 37(1): 46-53. |
[10] | 周新星, 郑玉婴, 陈乘鑫, 孔繁盛. 热塑性聚氨酯/石墨烯改性聚氨酯注浆材料的制备与性能研究[J]. 中国塑料, 2023, 37(1): 54-59. |
[11] | 高永红, 陈凌峰, 金清平. 冻融环境下GFRP管混凝土柱轴压性能试验研究[J]. 中国塑料, 2023, 37(1): 74-81. |
[12] | 刘昊育, 辛菲, 杜家盈, 樊晓玲. 无卤阻燃聚酯复合材料研究进展[J]. 中国塑料, 2023, 37(1): 133-143. |
[13] | 贾明印, 董贤文, 王佳明, 陈轲. 浸渍方式对纤维增强聚酰胺6复合材料真空袋压成型工艺及性能的影响[J]. 中国塑料, 2022, 36(9): 1-6. |
[14] | 陈淑花, 任子萌, 孙婷婷. 壳聚糖/壳聚糖接枝氧化石墨烯复合气凝胶的制备及性能研究[J]. 中国塑料, 2022, 36(9): 32-37. |
[15] | 张林, 夏章川, 何亚东, 信春玲, 王瑞雪, 任峰. 等离子体射流载气流量大小对玻璃纤维改性效果影响的研究[J]. 中国塑料, 2022, 36(9): 7-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||