
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2025, Vol. 39 ›› Issue (5): 132-138.DOI: 10.19491/j.issn.1001-9278.2025.05.021
• 综述 • 上一篇
收稿日期:
2024-10-19
出版日期:
2025-05-26
发布日期:
2025-05-22
通讯作者:
邱穆楠(1995—),女,讲师,从事聚合物基功能材料研究,qiumunan@btbu.edu.cn
LI Wenzhuo, QIU Munan(), WEN Bianying(
)
Received:
2024-10-19
Online:
2025-05-26
Published:
2025-05-22
Contact:
QIU Munan, WEN Bianying
E-mail:qiumunan@btbu.edu.cn;wenby@btbu.edu.cn
摘要:
在全球汽车行业积极追求环保低碳的背景下,新能源汽车因清洁高效特性迎来了技术革命与发展机遇。与传统汽车相比,新能源汽车的功能部件在其续航里程、驾驶体验及安全性等多个关键性能指标方面发挥着至关重要的作用,同时对材料提出了更高的要求。高分子材料因其易加工、低成本及可改性等优势,在新能源汽车的功能部件中具有重要的应用价值。本文综述了高分子材料在新能源汽车功能部件,包括动力电池、热管理系统、控制及驱动系统中的应用与目前的研究进展,并对未来的发展方向进行了展望。
中图分类号:
李文卓, 邱穆楠, 温变英. 高分子材料在新能源汽车功能部件中的应用研究进展[J]. 中国塑料, 2025, 39(5): 132-138.
LI Wenzhuo, QIU Munan, WEN Bianying. Research progress in applications of polymer materials for functional component of new energy vehicles[J]. China Plastics, 2025, 39(5): 132-138.
电极材料 | 放电比容量/mAh·g-1 | 容量保持率/ 循环次数/%·次-1 |
---|---|---|
PI⁃COF [ | 70.6(25mA/g) | 80/10 000 |
PVDF/Super⁃P/POFP[ | 85 (50 mA/g) | 77/500 |
PVDF/NCM811/Ni[ | 215.2 (0.5 C) | 83/300 |
Zn2TiO4@PPy [ | 297.5、248.4、184.8 (50、100、500 mA/g) | — |
PPy/Al2O3/LMO[ | 121.73(1 C) | 95/100 |
交联PANI[ | 120.5、113.8、92.5 (50、100、500 mA/g) | 99/150 |
PANI /C⁃LFP[ | 160、114 (0.2、5 C) | >90/60 |
PTh/CFx [ | 715 (0.05 C),270 (4 C) | 84/300 |
p⁃FcPZ@G[ | 250 (50 mA/g) | 99/10 000 |
Qz⁃EPE [ | 65 (1.5 C) | 74/500 |
pBABT[ | 442 (500 mA/g) | 90.7/1 000 |
NP4[ | 260.7 (20 mA/g) | 80/4 000 |
NCM811@PANI⁃PVP[ | 152 (6.5 C) | 88/100 |
电极材料 | 放电比容量/mAh·g-1 | 容量保持率/ 循环次数/%·次-1 |
---|---|---|
PI⁃COF [ | 70.6(25mA/g) | 80/10 000 |
PVDF/Super⁃P/POFP[ | 85 (50 mA/g) | 77/500 |
PVDF/NCM811/Ni[ | 215.2 (0.5 C) | 83/300 |
Zn2TiO4@PPy [ | 297.5、248.4、184.8 (50、100、500 mA/g) | — |
PPy/Al2O3/LMO[ | 121.73(1 C) | 95/100 |
交联PANI[ | 120.5、113.8、92.5 (50、100、500 mA/g) | 99/150 |
PANI /C⁃LFP[ | 160、114 (0.2、5 C) | >90/60 |
PTh/CFx [ | 715 (0.05 C),270 (4 C) | 84/300 |
p⁃FcPZ@G[ | 250 (50 mA/g) | 99/10 000 |
Qz⁃EPE [ | 65 (1.5 C) | 74/500 |
pBABT[ | 442 (500 mA/g) | 90.7/1 000 |
NP4[ | 260.7 (20 mA/g) | 80/4 000 |
NCM811@PANI⁃PVP[ | 152 (6.5 C) | 88/100 |
1 | 谢先树. 质子交换膜燃料电池车辆安全分析[J]. 汽车工艺与材料, 2024, 38(11): 1⁃8. |
XIE X S. Safety analysis of proton exchange membrane fuel cell vehicle[J]. Automoble Technology & Material, 2024, 1: 1⁃8. | |
2 | 张建周,褚观耀. 新能源汽车动力电池性能检测技术研究[J]. 时代汽车, 2024,(13): 100⁃102. |
3 | 卢欣欣,曹莹,贾鹏飞,等. 新能源汽车动力电池的研究与分析[J]. 时代汽车, 2023, (20): 114⁃116. |
LU X X, CAO Y, JIA P F, et al. Research and analysis of new energy vehicle power battery[J]. Auto Time, 2023, (20): 114⁃116. | |
4 | 《中国公路学报》编辑部. 中国汽车工程学术研究综述[J]. 中国公路学报, 2023, 36(11):1⁃192. |
Editorial Department of China Journal of Highway and Transport. Review on China's automotive engineering research progress:2023[J]. China Journal of Highway and Transport, 2023, 36(11): 1⁃192. | |
5 | 方原 999. 软包电池之铝塑膜详解(兼谈东尼电子)[Z/OL].2022⁃05⁃23[2024⁃10⁃10].. |
6 | 菅野了次. 村田专家带你了解锂离子电池的工作原理和特点[Z/OL].[2024⁃10⁃10].. |
7 | 杜志强. 高分散性多壁碳纳米管导电浆料的制备及其在锂电池中的应用研究[D]. 合肥大学, 2024. |
8 | Xu Lihuan, Hao Xin, Chang Su. Effect of cross⁃linking on electrochemical performances of polyaniline as the cathode material of lithium⁃ion batteries[J].Polymer Bulletin, 2024, 79: 5 261⁃5 278. |
9 | Zou Mingci, Wang Yuanyun, Han Mengcheng, et al. Zn2TiO4 spheres coated with polypyrrole as high⁃performance negative for Li⁃ion batteries[J]. Ionics, 2022, 28: 4 611–4 620. |
10 | 王娟. 导电聚合物在电极材料中的应用研究[D]. 华中科技大学, 2020. |
11 | Walsh Frank C, Wang Shuncai, Zhou Nan. The electrodeposition of composite coatings: diversity, applications and challenges[J]. Current Opinion in Electrochemistry, 2020, 20: 8⁃19. |
12 | Kausar Ayesha. Corrosion prevention prospects of polymeric nanocomposites: a review[J]. Journal of Plastic Film&Sheeting, 2019, 35(2): 181⁃202. |
13 | Sheng Lei, Dong Yanying, Yu Dou, et al. Polymerization⁃tailored polyimides as cathodes for lithium⁃ion batteries[J]. Materials Advances, 2021, 17: 5 785⁃5 790. |
14 | Zhang Xiangyang, Xu Qing⁃yu, Wang Shijie, et al. One⁃step synthesis of a polymer cathode material containing phenoxazine with high performance for lithium⁃ion batteries[J]. ACS Applied Energy Materials, 2021, 4(10): 11 787⁃11 792. |
15 | Ko Hyein, Kim Minsung, Yeong Hong Soo, et al. Plasma⁃assisted mechanochemistry to covalently bond ion⁃conducting polymers to Ni⁃rich cathode materials for improved cyclic stability and rate capability[J]. Applied Energy Materials, 2022, 5(4): 4 808⁃4 816. |
16 | Liang Zhu, Zhang Yingbing, Zhao Xiaoyu, et al. Polypyrrole/Al2O3/LiMn2O4 cathode for enhanced storage of Li ions[J]. Electrochemistry Communications, 2021, 124: 106951. |
17 | Chen Wei⁃Min, Huang Yun⁃Hui, Yuan Li⁃Xia. Self⁃assembly LiFePO4/polyaniline composite cathode materials with inorganic acids as dopants for lithium⁃ion batteries[J]. Journal of Electroanalytical Chemistry, 2011, 660(1): 108⁃113. |
18 | Yin Xiaodong, Yu Li, Feng Yiyu, et al. Polythiophene/graphite fluoride composites cathode for high power and energy densities lithium primary batteries[J]. Synthetic Metals, 2016, 220: 560⁃566. |
19 | Yang Zhao, Ni Minghan, Nuo Xu, et al.High⁃performance lithium⁃ion batteries based on polymer/graphene hybrid cathode material[J]. Science China Chemistry, 2023, 66: 2 683⁃2 689. |
20 | Huan Wang, Emanuelsson Rikard, Liu Haidong, et al. A conducting additive⁃free high potential quinone⁃based conducting redox polymer as lithium ion battery cathode[J]. Electrochimica Acta, 2021, 391: 138901. |
21 | Ning Xu, Mei Shiwei, Chen Zhangxin, et al.High⁃performance Li⁃organic battery based on thiophene⁃containing porous organic polymers with different morphology and surface area as the anode materials[J]. Chemical Engineering Journal, 2020, 395: 124795. |
22 | Zhang Yuyuan, Zhang Zijian, Jia Jiru, et al.Cyclen⁃linked benzoquinone based carbonyl network polymer for high⁃performance lithium organic battery[J]. Journal of Electroanalytical Chemistry, 2023, 932: 117251. |
23 | Gan Qingmeng, Ning Qin, Zhu Youhuan, et al.Polyvinylpyrrolidone⁃induced uniform surface⁃conductive polymer coating endows Ni⁃Rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium⁃ion batteries[J]. Applied Materials, 2019, 11: 12 594⁃12 604. |
24 | Hu Jiqing. Study on polyimide active materials and binders for lithium ion batteries[D]. South China University of Technology, 2019. |
25 | Kang Jeong Min, Woo Kim Hyoung, Young Seok Jang, et al.Thick positive electrode using polytetrafluorethylene (PTFE) binder for high⁃energy⁃density lithium⁃ion batteries[J]. The Korean Electrochemical Society, 2021, 24: 28⁃33. |
26 | Fan Xiaoying, Peng Chen, Xu Yin, et al.One stone for multiple birds: a versatile cross⁃linked poly(dimethyl siloxane) binder boosts cycling life and rate capability of an NCM 523 cathode at 4.6 V[J]. Applied Materials & Interfaces, 2022, 14: 16245⁃16257. |
27 | 杨琪, 邓南平, 程博闻. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12):2 270⁃2 282. |
YANG Q, DENG N P, CHENG B W. Gel polymer electrolytes in lithium batteries[J]. Progress in Chemistry, 2021, 33(12): 2 270⁃2 282. | |
28 | Jiang Yujie, Chao Xu, Kang Xu, et al.Surface modification and structure constructing for improving the lithium ion transport properties of PVDF based solid electrolytes[J]. Chemical Engineering Journal, 2022, 442: 136245. |
29 | Sindhu K P, Abdul Majeed S S M, Shahitha Parveen J. PEO/PMMA solid nanocomposite polyelectrolyte with enhanced ionic conductivity and promising dielectric properties[J]. Journal of Electronic Materials, 2021, 50: 6 654–6 666. |
30 | Lin Yuhan, Chen Jiahong, Zhu Junli, et al. In⁃situ construction of tetraethylene glycol diacrylate based gel polymer electrolyte for long lifespan lithium metal batteries[J]. Surfaces and Interfaces, 2023, 37: 102737. |
31 | Liu Lehao, Mo Jinshan, Li Jingru, et al.Comprehensively⁃modified polymer electrolyte membranes with multifunctional PMIA for highly⁃stable all⁃solid⁃state lithium⁃ion batteries[J]. Journal of Energy Chemistry, 2020, 48: 334⁃343. |
32 | Jamalpour Seifollah, Ghahramani Maral, Seyed Reza Ghaffarian, et al. The effect of poly(hydroxyl ethyl methacrylate) on the performance of PVDF/P(MMA⁃co⁃HEMA) hybrid gel polymer electrolytes for lithium ion battery application[J]. Polymer, 2020, 195: 122427. |
33 | Wang Xiuli, Hao Xiaojing, Dan Cai, et al. An ultraviolet polymerized 3D gel polymer electrolyte based on multi⁃walled carbon nanotubes doped double polymer matrices for lithium⁃sulfur batteries[J]. Chemical Engineering Journal, 2020, 382: 122714. |
34 | Zhao Huijuan, Deng Nanping, Ju Jingge, et al.Novel configuration of heat⁃resistant gel polymer electrolyte with electrospun poly (vinylidene fluoride⁃co⁃hexafluoropropylene) and poly⁃m⁃phenyleneisophthalamide composite separator for high⁃safety lithium⁃ion battery[J]. Materials Letters, 2019, 236: 101⁃105. |
35 | Liang Y F, Xia Y, Zhang S Z, et al.A preeminent gel blending polymer electrolyte of poly(vinylidene fluoride⁃hexafluoropropylene)⁃poly(propylene carbonate) for solid⁃state lithium ion batteries[J]. Electrochimica Acta, 2019, 296: 1 064⁃1 069. |
36 | Wang Yi⁃Fan, Ming Sun, Liu Wei⁃Liang, et al.Thermoplastic polyurethane/poly(methyl methacrylate)/titania gel electrolyte film with high voltage and coulombic efficiency for lithium⁃ion battery[J]. Ionics, 2019, 25: 3 695–3 704. |
37 | 林志远.固态锂电池用新型聚合物电解质研究[D].北京工业大学,2020. |
Lin Zhiyuan. Study of novel polymer electrolyte for solid lithium batteries[D]. Beijing University of Technology, 2020. | |
38 | Celgard Products Data Sheets[Z/OL].[2024⁃10⁃10].. |
39 | 龚文正,谷俊峰,阮诗伦,等.静电纺丝制备高强度聚偏氟乙烯锂离子电池隔膜[J].高分子材料科学与工程,2019,35(03):148⁃155. |
GONG W Z, GU J F, RUAN S L,et al. Preparation of high⁃strength polyvinylidene fluoride lithium⁃ion battery separator by electrospinning[J]. Polymer Materials Science and Engineering, 2019, 35(03): 148⁃155. | |
40 | 唐成玉.聚丙烯腈/聚偏氟乙烯锂离子电池隔膜的制备与性能研究[D].四川轻化工大学,2021. |
41 | 曾浩,吕毅,王鹏,等. 静电纺丝聚酰亚胺微纤/聚乙烯复合隔膜的结构与性能研究[J]. 云南化工,2020,47(6):46⁃47. |
ZENG H, LV Y, WANG P,et al. Structure and properties of electrospinning polyimide microfiber/polyethylene composite diaphragm[J]. Yunnan Chemical Technology, 2020, 47(6): 46⁃47. | |
42 | 龚文正.聚芳醚砜酮锂离子电池隔膜的制备及性能研究[D].大连理工大学,2020. |
43 | 朱威威,朱世从,王广健.碳纳米管/石墨烯/氮化硼导热硅脂的制备及性能研究[J].兰州文理学院学报(自然科学版),2021,35(03):40⁃44. |
ZHU W W, ZHU S C, WANG G J. Study on preparation and performances of thermal conductive silicon greases filled with CNTs/graphene/h⁃BN[J]. Journal of Lanzhou University of Arts and Science(Natural Sciences), 2021, 35(03): 40⁃44. | |
44 | 陈世容,暴玉强,王强,等.高导热硅脂的研制[J].有机硅材料,2019,33(06):446⁃451. |
CHEN S R, BAO Y Q, WANG Q,et al. Preparation of high thermal conductivity silicone grease[J]. Silicone Material, 2019, 33(06): 446⁃451. | |
45 | 张崇印,王瑛,胡励,等.高导热硅酯复合材料的制备及性能[J].电镀与涂饰,2019,38(24):1 337⁃1 341. |
ZHANG C Y, WANG Y, HU L,et al. Preparation and properties of silicone composites with high thermal conductivity[J]. Electroplating & Finishing, 2019, 38(24): 1 337⁃1 341. | |
46 | 黄计锋,闻明,徐华斌,等.高导热低热阻硅脂的制备与性能研究[J].化工新型材料,2022,50(09):120⁃123. |
HUANG J F, WEN M, XU H B,et al. Preparation and performance of silicone grease with high thermal conductivity and low thermal resistance[J]. New Chemical Materials, 2022, 50(09): 120⁃123. | |
47 | 陈川,夏延秋,陈俊寰.碳纳米管/氮化硼导热硅脂的制备及其导热性能研究[J].中国胶粘剂,2017,26(08):42⁃47. |
CHEN C, XIA Y Q, CHEN J H. Study on preparation and heat⁃conductivity of heat⁃conducting silicone with CNTs/BN powders[J]. China Adhesives, 2017, 26(08): 42⁃47. | |
48 | 瓦克研发出供电子产品使用的易涂覆型导热胶粘剂[J].电子世界,2015,(24):6. |
49 | 熊雯雯.高导热环氧树脂复合绝缘胶黏剂的制备与性能研究[D].北京交通大学,2020. |
50 | 丁冉.快结晶型水性聚氨酯的制备及其在导热胶粘剂上的应用[D].安徽大学,2021. |
51 | 于佳慧. 聚氨酯阻燃材料的制备及隔热性能研究[D]. 兰州理工大学, 2022. |
52 | 朱雪利. 阻燃聚氨酯泡沫及其复合隔热材料的制备和性能研究[D]. 天津工业大学, 2023. |
53 | 曹中华, 盛仁斌, 杜庆元. 一种轻质PU发动机舱隔热垫的应用研究[J]. 汽车工艺与材料, 2022, (09): 34⁃38. |
CAO Z H, SHENG R B, DU Q Y. Application research on a lightweight PU engine hood insulation pad[J]. Automobile Technology & Material, 2022, (09): 34⁃38. | |
54 | Bhoite Sangram P, Kim Jonghyuck, Wan Jo, et al. Understanding the influence of gypsum upon a hybrid flame retardant coating on expanded polystyrene beads[J]. Polymers, 2022, 14(17):3570. |
55 | Yoda Satoshi, Takeshita Satoru, Ono Takumi, et al. Development of a new silica aerogel⁃polypropylene foam composite as a highly flexible thermal insulation material[J]. Frontiers in Materials, 2021, 8: 674846. |
56 | Yang Cheng, Xiang Zhang, Qin Yixiu, et al. Super⁃elasticity at 4K of covalently crosslinked polyimide aerogels with ultrahigh negative poisson′s ratio[J]. Nature Communications, 2021, 12: 4092. |
57 | 梁留博, 姜博涛, 白宇, 等. 碳纤维/聚醚醚酮复合泡沫的制备与性能研究[J].长春工业大学学报, 2022, 43(Z1): 494⁃499. |
LIANG L B, JIANG B T, BAI Y,et al. Preparation and properties of carbon fiber/poly (ether ether ketone) composite foam[J]. Journal of Changchun University of Technology, 2022, 43(Z1): 494⁃499. | |
58 | 吴一凡, 王兴涛, 万红敬, 等. 基于SiO2气凝胶及空心微珠填料的织物用隔热涂料的性能研究[J]. 涂料工业, 2023, 53(4): 70⁃74. |
WU Y F, WANG X T, WAN H J,et al. Study on the properties of thermal insulation coatings for fabrics based on SiO2 aerogel and hollow bead filler[J]. Paint & Coatings Industry, 2023, 53(4): 70⁃74. | |
59 | 杨会康. 高性能纤维泡沫体系的构建与挤压成型研究[D]. 华南理工大学, 2023. |
60 | 美聚高.详解动力电池PPO塑料壳体材料的典型应用[Z/OL].(2021⁃07⁃04)[2024⁃10⁃10].. |
61 | 车规级IGBT注塑外壳(PBT、PPS)[Z/OL].[2024⁃10⁃10].. |
62 | PEEK齿轮(传动控制)[Z/OL].[2024⁃10⁃10].. |
[1] | 郭三刺, 王蕾, 袁洪跃, 杨怡丹, 刘宪虎, 潘亚敏. 辐射制冷材料及其应用研究进展[J]. 中国塑料, 2025, 39(1): 132-140. |
[2] | 郑天宜, 张犇, 郭敏, 王颖. 用于骨组织再生的电活性高分子材料研究进展[J]. 中国塑料, 2024, 38(8): 113-117. |
[3] | 董光, 侯仰喆, 袁洪跃, 刘宪虎, 潘亚敏. 多孔聚乳酸材料的制备及结构性能优化进展[J]. 中国塑料, 2024, 38(8): 132-140. |
[4] | 刘顺权, 张馨月, 冯占苗, 傅陈超, 薛平, 张润. PTFE改性技术及其性能优化研究进展[J]. 中国塑料, 2024, 38(7): 112-119. |
[5] | 任小龙, 李艺, 苏丹妮. 高透明性聚酰亚胺薄膜专利技术研究与工业化进展[J]. 中国塑料, 2024, 38(7): 120-137. |
[6] | 孔子萌, 张简, 邓雅馨, 徐雪玲, 陈雅君. 阻燃聚丁二酸丁二醇酯的研究进展[J]. 中国塑料, 2024, 38(2): 105-117. |
[7] | 贾梦, 许准, 魏思淼, 张庆磊, 许博. 建筑用泡沫材料阻燃研究进展[J]. 中国塑料, 2024, 38(2): 52-60. |
[8] | 杜家盈, 辛菲, 胡佳悦, 冯恺翾. 石墨相氮化碳阻燃应用研究进展[J]. 中国塑料, 2024, 38(11): 97-103. |
[9] | 王雪晶, 辛菲, 赖巧婕. 氮化碳在光学领域的研究进展[J]. 中国塑料, 2024, 38(10): 134-141. |
[10] | 王玉伟, 肖润祥, 张宏凯, 官文瑾, 邓亚峰. 纳米纤维基空气过滤材料的研究进展[J]. 中国塑料, 2023, 37(9): 115-124. |
[11] | 秦森, 何和智, 张涛, 黄照夏, 瞿金平. 塑料体积脉动注射成型技术研究[J]. 中国塑料, 2023, 37(9): 96-101. |
[12] | 张文睿 贾涵 张鑫 潘亚敏 刘春太 申长雨 刘宪虎. 超高分子量聚乙烯薄膜制备方法与应用[J]. , 2023, 37(5): 1-8. |
[13] | 李玉峰 赵阳 刘丽爽 冯峰 高晓辉 何锡凤. 乳液聚合法制备聚合物/石墨烯复合材料研究进展[J]. , 2023, 37(4): 112-120. |
[14] | 邢利欣 任小龙 廖文靖 陈志平 冯羽风. 可生物降解双向拉伸聚乳酸薄膜成型技术研究进展[J]. , 2023, 37(4): 121-135. |
[15] | 马俊丞, 徐双平, 王馨甜, 贾宏葛, 张明宇, 蘧延庆. 生物基材料在碘吸附中的研究进展[J]. 中国塑料, 2023, 37(11): 178-191. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||