
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
›› 2023, Vol. 37 ›› Issue (3): 103-112.
管羽1,付烨1,翁云宣2
收稿日期:
2022-11-28
修回日期:
2022-12-16
出版日期:
2023-03-26
发布日期:
2023-03-26
Received:
2022-11-28
Revised:
2022-12-16
Online:
2023-03-26
Published:
2023-03-26
摘要: 综述了聚合物分子结构设计、聚合物共混改性以及复合材料配方设计等生物降解聚酯降解速率调控方法,分析了生物降解聚酯降解性能调控面临的问题并展望其前景,以期为制备具有高性能、时控性和完全降解性的生物降解聚合物材料提供理论基础。
管羽 付烨 翁云宣. 生物降解聚酯降解性能调控研究进展[J]. , 2023, 37(3): 103-112.
[1]Magalh?es R P, Cunha J M, Sousa S F. Perspectives on the Role of Enzymatic Biocatalysis for the Degradation of Plastic PET[J]. International Journal of Molecular Sciences, 2021, 22(20): 11257. [2]国家市场监督管理总局.生物降解塑料与制品降解性能及标识要求:GB/T 41010-2021[M]. 化学工业出版社, 2021.[3]李修莲. 生物降解脂肪族聚酯的改性及性能研究[D]. 安徽大学, 2013.[4]张成龙. 生物基聚酯的合成及PBS共混体系的性能研究[D]. 长春工业大学, 2019.[5]Zhao Y, Chen G, Xiao M, et al. Biodegradable PPC/(PVA-TPU) Ternary Blend Blown Films with Enhanced Mechanical Properties[J]. Journal of Polymer Research, 2016, 23(4):80. [6]曲萍, 郭宝华, 王海波,等. PBAT全生物降解地膜在玉米田中的降解特性[J]. 农业工程学报, 2017, 33(17): 194.[7]张云飞. 硅灰石填充PLA/PBAT共混体系的结构与性能研究[D]. 兰州理工大学, 2020. [8]Jia H, Zhang M, Weng Y, et al. Degradation of Poly(Butylene Adipate-co-Terephthalate) by Stenotrophomonas Sp. Ycj1 Isolated from Farmland Soil-Science Direct[J]. Journal of Environmental Sciences, 2021, 103:50.[9]李家旭. 生物降解聚己二酸对苯二甲酸丁二酯薄膜气体阻隔性能研究及调控[D]. 浙江大学, 2020.[10]程赤云, 马骏, 阎瑞香. 改性聚乳酸的性能特点及其在果蔬保鲜中的应用[J]. 包装工程, 2021, 42(19): 136.[11]姚逸, 王超军, 欧阳春平, 等. 生物降解塑料聚乳酸研究进展[J]. 广东化工, 2021, 48(17): 75.[12]姜英勇, 任亮, 任重, 等. 生物可降解PBS聚酯合金的制备与性能调控[J].材料导报, 2021, 35(22): 22151.[13]李冬芸, 韩昭良. 生物降解塑料的生产现状及应用[J]. 合成树脂及塑料, 2021, 38(5): 4.[14]史可, 张晶, 苏婷婷, 等. 生物可降解塑料的改性研究进展[J]. 化工新型材料, 2019, 47(4): 5.[15]项望凯. 聚乙醇酸及其共聚酯的制备与性能[D]. 浙江大学, 2022.[16]石璞, 钟苗苗, 李福枝, 等. 聚碳酸亚丙酯(PPC)加工热稳定性研究[J]. 功能材料, 2015, 46(15): 5.[17]刘伯林, 崔华帅, 王金花, 等. 全降解材料聚乙交酯或聚乙醇酸(PGA)的发展[J]. 纺织科学研究, 2021(4): 3.[18]封硕. 生物可降解高分子材料研究综述[J]. 中山大学研究生学刊, 2012, 33(1): 5.[19]范少华. PBAT/PLA可降解地膜老化性能研究[D]. 山东农业大学, 2020.[20]戈进杰. 生物降解高分子材料及其应用[M]. 北京: 化学工业出版社, 2002. [21]王香云. PBAT/改性纤维素复合材料的制备与性能研究[D]. 新疆大学, 2016.[22]张也. 生物可降解聚己二酸对苯二甲酸丁二酯(PBAT)共混物及薄膜的制备与性能研究[D]. 长春工业大学, 2022.[23]Cowan J S, Inglis D A, Miles, C A. Deterioration of Three Potentially Biodegradable Plastic Mulches Before and After Soil Incorporation in a Broccoli Field Production System in Northwestern Washington[J]. Horttechnology, 2013, 23(6): 849.[24]唐璐. 几种生物降解高分子/笼形倍半硅氧烷纳米复合材料的制备、结晶行为与性能调控[D]. 北京化工大学, 2017.[25]Kumar S, Singh S, Senapati S, et al. Controlled Drug Release through Regulated Biodegradation of Poly(Lactic Acid) Using Inorganic Salts[J]. International Journal of Biological Macromolecules, 2017, 104:487.[26]Han Y, Teng Y, Wang X, et al. Soil Type Driven Change in Microbial Community Affects Poly(Butylene Adipate-co-Terephthalate) Degradation Potential[J]. Environmental Science and Technology, 2021,?55?(8)?:4648[27]冷雪菲, 魏志勇, 李杨. 共聚序列结构对生物材料降解行为的影响[C]. 2017: 39.[28]邹文奇, 陈通, 叶海木, 等. 可生物降解聚酯的制备及性能研究进展[J]. 化工学报, 2021, 72(12): 6216.[29]唐一壬, 齐治国, 张旸, 等. 生物降解塑料聚丁二酸丁二酯及其共聚物:从基础研究到产业化[J]. 高分子通报, 2015(9): 126.[30]张敏, 赵冬, 李成涛, 等. 不同主链PBS基共聚酯的酶催化降解及分子模拟[J]. 塑料,2018, 47(01): 13.[31]Han H, Tian Y, Kong Z, et al. A High Performance Copolyester with "Locked" Biodegradability: Solid Stability and Controlled Degradation Enabled by Acid-Labile Acetal[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(5).[32]Han J, Shi J, Xie Z, et al. Synthesis, Properties of Biodegradable Poly(Butylene Succinate-co-Butylene 2-Methylsuccinate) and Application for Sustainable Release[J]. Materials, 2019, 12(9).[33]杨正和, 田国强, 陈思翀, 等. 引入δ-内酯疏水取代烷基结构实现聚对二氧环己酮的性能调控[J].高分子学报,2022, 53(03): 236.[34]Jin H J, Kim D S, Kim M N, et al. Synthesis and Properties of Poly (Butylene Succinate) with N-Hexenyl Side Branches[J]. Journal of Applied Polymer Science, 2001, 81(9): 2219.[35]马昊, 黄关葆, 黄丹, 等. 聚碳酸酯二醇共聚改性PBS的制备及性能[J]. 塑料, 2019, 48(06): 51.[36]席克会. 聚丁二酸丁二醇酯的降解性能调控[D].郑州大学, 2017.[37]Palsikowski P A, Kuchnier C N, Pinheiro I F, et al. Biodegradation in Soil of PLA/PBAT Blends Compatibilized with Chain Extender[J]. Journal of Environmental Polymer Degradation, 2018, 26(1): 1.[38]王诗卉, 李光, 金俊弘, 等. PLA/PGA复合纳米纤维膜的制备及其生物相容性与降解性研究[J].合成纤维工业, 2020, 43(05): 33.[39]Sousa F M, Cavalcanti F B,Marinho, V A D, et al. Effect of Composition on Permeability, Mechanical Properties and Biodegradation of PBAT/PCL Blends Films[J]. Polymer Bulletin, 2021, 79?(7): 5327[40]王淑芳, 陶剑, 郭天瑛, 等.脂肪族聚碳酸酯(PPC)与聚乳酸(PLA)共混型生物降解材料的热学性能,力学性能和生物降解性研究[J]. 离子交换与吸附, 2007, 23(1): 9.[41]Ren Y, Hu J, Yang M, et al. Biodegradation Behavior of Poly (Lactic Acid) (PLA), Poly (Butylene Adipate-Co-TerepHthalate) (PBAT), and Their Blends Under Digested Sludge Conditions[J]. Journal of Polymers and the Environment, 2019, 27(12): 2784.[42]Tabasi R Y, Ajji A. Tailoring Heat-Seal Properties of Biodegradable Polymers through Melt. [J]. International Polymer Processing Journal of the Polymer Processing Society, 2017, 32(5):606.[43]Dammak M, Fourati Y, Tarrés Q, et al. Blends of PBAT with Plasticized Starch for Packaging Applications: Mechanical Properties, Rheological Behaviour and Biodegradability[J]. Industrial Crops and Products, 2020, 144:112061.[44]孙静, 黄安荣, 罗珊珊. 扩链剂对PBAT/Talc复合材料性能影响研究[J]. 塑料科技, 2021, 49(08): 1. [45]王冬, 蒙钊, 丁力. 扩链剂KL-E4370对PLA/PBAT复合材料结构与性能的影响[J]. 塑料科技, 2018, 46(5): 103.[46]靳琳琳, 田俊凯, 李家炜, 等. 可降解聚羟基乙酸低聚物改性聚酯的合成及其性能[J].纺织学报,2021, 42(01): 16.[47]Kumar S, Maiti P. Controlled Biodegradation of Polymers Using Nanoparticles and Its Application[J]. Rsc Advances, 2016, 6(72): 67449[48]刘腾飞. 改性淀粉/PBAT复合材料相容性及性能研究[D]. 江苏科技大学,2019.[49]杨菁卉, 杨福馨, 李绍菁, 等. PBAT/淀粉填充可降解薄膜的制备及降解性能的研究[J]. 功能材料,2020, 51(10): 10075.[50]Kim J H, Lee J C, Kim G H. Study on Poly(Butylene Adipate-co-Terephthalate)/Starch Composites with Polymeric Methylenediphenyl Diisocyanate[J]. Journal of Applied Polymer Science, 2015, 132(16).[51]程文喜, 白深奥, 万如意, 等. 聚丁二酸丁二酯/乙酸酯淀粉/淀粉复合材料制备与性能[J]. 工程塑料应用, 2021, 49(5): 5.[52]Liu Y, Liu S, Liu Z, et al. Enhanced Mechanical and Biodegradable Properties of PBAT/Lignin Composites via Silane Grafting and Reactive Extrusion[J]. Composites Part B Engineering, 2021, 220(5): 108980.[53]Silva T, Menezes F, Montagna L S, et al. Effect of Lignin as Accelerator of the Biodegradation Process of Poly(Lactic Acid)/Lignin Composites[J]. Materials Science & Engineering, B. Solid-State Materials for Advanced Technology, 2019(251): 251.[54]Falc?O G A M, Almeida T G, Bardi M A G, et al. PBAT/Organoclay Composite Films—Part 2: Effect of Uv Aging on Permeability, Mechanical Properties and Biodegradation[J]. Polymer Bulletin, 2018, 76(1): 291.[55]Kumar S, Maiti P. Understanding the Controlled Biodegradation of Polymers Using Nanoclays[J]. Polymer, 2015, 76: 25.[56]Freitas A, Filho T, CalvO P S , et al. Effect of Montmorillonite and Chain Extender on Rheological, Morphological and Biodegradation Behavior of PLA/PBAT Blends[J]. Polymer Testing, 2017, 62: 189.[57]Zeng X, Zhong B, Jia Z, et al. Halloysite Nanotubes as Nanocarriers for Plant Herbicide and Its Controlled Release in Biodegradable Polymers Composite Film[J]. Applied Clay Science, 2019, 171: 20.[58]Huang D, Hu Z, Ding Y, et al. Seawater Degradable PVA/PCL Blends with Water-Soluble Polyvinyl Alcohol as Degradation Accelerator[J]. Polymer Degradation and Stability, 2019, 163: 195.[59]Liu H , Shen H, Li F, et al. Polyvinyl Alcohol and Acidity-Regulating KH2PO4 Synergistically Accelerated Degradation of PBAT/PLA Composites[J]. Journal of Applied Polymer Science, 2020, 138?(17).[60]Guindani C, Candiotto G, Araújo P H H, et al. Controlling the Biodegradation Rates of Poly(Globalide-co-ε-Caprolactone) Copolymers by Post Polymerization Modification[J]. Polymer Degradation and Stability, 2020, 179: 109287.[61]Pan Z,HanX,Niu W, et al. A Model for Biodegradation of Composite Materials Made of Polyesters and Tricalcium Phosphates.[J]. Biomaterials, 2011, 32(9):2248.[62]Felfel R M,Hossain K M Z,Parsons A J, et al. Accelerated in Vitro Degradation Properties of Polylactic Acid/Phosphate Glass Fibre Composites [J]. J. Mater. Sci,2015, 50(11): 3942 [63]Orozco V H, Kozlovskaya V, Kharlampieva E, et al. Biodegrad-Able Self-Reporting Nanocomposite Films of Poly(Lactic Acid) Nanoparticles Engineered by Layer-by-Layer Assembly [J]. Polymer, 2010, 51(18): 4127.[64]令狐昌开, 李小龙, 罗筑, 等. 亚磷酸三苯酯调控聚乳酸/氯化铁共混体系的降解行为和性能[J]. 材料研究学报, 2021, 35(8):9.[65]Li X, Gong S, Yang L, et al. Study on the Degradation Behavior and Mechanism of Poly(Lactic Acid) Modification by Ferric Chloride-Sciencedirect[J]. Polymer, 188. |
[1] | 金清平, 刘运蝶. 纤维增强复合材料约束混凝土柱耐久性研究进展[J]. 中国塑料, 2023, 37(2): 121-128. |
[2] | 董竞辉, 桑晓明, 陈祯, 尹伟浩, 姜骞, 陈兴刚. 短切碳纤维对聚苯腈/碳纤维复合材料性能的影响[J]. 中国塑料, 2023, 37(2): 31-37. |
[3] | 李传敏, 杨建军, 李洋, 王洛唯. PDMS/SiC功能梯度复合材料3D打印主动混合喷头结构设计与工艺参数优化[J]. 中国塑料, 2023, 37(2): 71-76. |
[4] | 焦锐敏, 何小芳, 董青松, 王林, 曹新鑫. 共改性煤粉增强丁苯橡胶的硫化、力学和热稳定性能研究[J]. 中国塑料, 2023, 37(1): 46-53. |
[5] | 刘昊育, 辛菲, 杜家盈, 樊晓玲. 无卤阻燃聚酯复合材料研究进展[J]. 中国塑料, 2023, 37(1): 133-143. |
[6] | 贾明印, 董贤文, 王佳明, 陈轲. 浸渍方式对纤维增强聚酰胺6复合材料真空袋压成型工艺及性能的影响[J]. 中国塑料, 2022, 36(9): 1-6. |
[7] | 张林, 夏章川, 何亚东, 信春玲, 王瑞雪, 任峰. 等离子体射流载气流量大小对玻璃纤维改性效果影响的研究[J]. 中国塑料, 2022, 36(9): 7-15. |
[8] | 焦志伟, 王克琛, 张杨, 杨卫民. 基于碳纳米涂层沉积滑石粉与炭黑协同填充PVC/ABS复合材料的性能研究[J]. 中国塑料, 2022, 36(8): 10-15. |
[9] | 喻九阳, 王众浩, 陈琦, 夏亚忠. 基于阀体制造的先进树脂基复合材料性能研究[J]. 中国塑料, 2022, 36(8): 16-22. |
[10] | 张陶忠, 陈晓龙, 郝晓宇, 于福家. 滑石、CaCO3、BaSO4填充PP复合材料力学性能及界面相互作用对比[J]. 中国塑料, 2022, 36(8): 36-41. |
[11] | 曲玉婷, 王立梅, 齐斌. 聚乙二醇对聚乳酸/淀粉纳米晶复合材料性能的影响[J]. 中国塑料, 2022, 36(8): 56-61. |
[12] | 冯冰涛, 王晓珂, 张信, 孙国华, 汪殿龙, 侯连龙, 马劲松. 连续碳纤维增强热塑性复合材料制备与应用研究进展[J]. 中国塑料, 2022, 36(7): 165-173. |
[13] | 宋银宝, 杨建军, 李传敏. PDMS/SiC功能梯度复合材料性能与制造精度研究[J]. 中国塑料, 2022, 36(7): 30-36. |
[14] | 杨小龙, 陈文静, 李永青, 闫晓堃, 王修磊, 谢鹏程, 马秀清. 导电型聚合物/石墨烯复合材料的研究进展[J]. 中国塑料, 2022, 36(6): 165-173. |
[15] | 王轲, 龙春光. PE⁃UHMW/海泡石纤维复合材料的力学性能与摩擦学性能研究[J]. 中国塑料, 2022, 36(5): 19-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||