
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
›› 2023, Vol. 37 ›› Issue (3): 113-122.
• • 上一篇
郭文娇1,于雯霞2,党春蕾2,何艺琳2,赵亚欣2,田华峰2,李莹3
收稿日期:
2022-12-30
修回日期:
2023-01-12
出版日期:
2023-03-26
发布日期:
2023-03-26
Received:
2022-12-30
Revised:
2023-01-12
Online:
2023-03-26
Published:
2023-03-26
摘要: 从使用不同导电填料(炭黑、碳纳米管、石墨、金属、有机填料等)制备导电聚氨酯泡沫(PUF)材料的角度进行分析,总结了添加不同导电填料的复合泡沫制备方法以及对泡沫材料性能的影响,并论述了导电PUF材料在压阻材料、吸波材料、电磁屏蔽材料以及电极材料等领域的应用。分析表明,通过添加导电填料,可以改善PUF的静电现象,提高防静电、导电等性能并拓宽PUF材料的应用领域。
郭文娇 于雯霞 党春蕾 何艺琳 赵亚欣 田华峰 李莹. 导电聚氨酯泡沫材料研究进展[J]. , 2023, 37(3): 113-122.
[1] 赵帅国,谷辉伟,屈莹莹.复合型导电高分子泡沫的研究进展[J].工程塑料应用,2012,40(07):89-92. [2] 姚媛媛, 田华峰, 项爱民. 生物质聚氨酯泡沫研究进展[J].聚氨酯工业, 2019,34(02):1-3+11. [3] Qiu Q L, Yang X, Zhang P H, et al. Effect of fiber surface treatment on the structure and properties of rigid bagasse fibers/polyurethane composite foams[J]. Polymer Composites, 2021, 42(6): 2766-2773. [4] Li Y, Tian H F, Zhang J, et al. Fabrication and properties of rigid polyurethane nanocomposite foams with functional isocyanate modified graphene oxide[J]. Polymer Composites, 2020, 41(12): 5126-5134. [5] 李冬娜, 马晓军. 防静电包装材料分类及研究进展[J]. 上海包装, 2018, 2(11): 44-46. [6] Tian H F, Zhou H F, Fu H, et al. Enhanced electrical and dielectric properties of plasticized soy protein bioplastics through incorporation of nanosized carbon black[J]. Polymer Composites, 2020, 41(10):5246-5256. [7] 隋泽华, 石培健, 魏欣等. 导电聚氨酯泡沫的制备[J].化学推进剂与高分子材料, 2017, 15 (05): 67-70. [8] 郭文杰. 聚氨酯泡沫中两种抗静电添加剂的协同效应研究[J]. 四川水泥, 2015,43(8): 33-34. [9] 常龙飞,茹红强, 张衡等.基于炭黑导电碳层电镀制备泡沫铜[J].电镀与涂饰,2016,35(20):1065-1069. [10] 周明星. 炭黑/聚氨酯抗静电泡沫塑料的研究[D].浙江大学, 2010. [11] 彭亮. 单壁碳纳米管的遗传毒性研究进展[J]. 毒理学杂志, 2018, 32(6):6-7. [12] 李浩. 碳纳米管的力学性能及其尺寸温度影响分析[D].燕山大学,2021.000331. [13] Xiang A M, Guo G P, Tian H F. Fabrication and Properties of Acid Treated Carbon Nanotubes Reinforced Soy Protein Nanocomposites[J]. Journal of Polymers and The Environment, 2017,25(3): 519-525. [14]孙雪虎. 碳纳米管填充导电复合材料的电导率高效计算及仿真研究[D].合肥:合肥工业大学, 2021. [15] 黄正玮, 宋颖, 赵晓华, 侯会明. 考虑碳纳米管非均匀分布的复合材料电导率计算[J/OL]. 计算力学学报, 2022, 9:1-9. [16]龚启春, 翟天亮, 夏和生. 具有负温度系数效应的导电硬质聚氨酯泡沫[J]. 高分子材料科学与工程, 2012, 28 (2) : 53-56. [17] 丁祥,吕程,张过有. MWCNT/PUF复合材料的电磁屏蔽效能[J].聚氨酯工业, 2018, 33 (01): 16-18. [18]李昕阳. 碳纳米材料增强热塑性弹性体及其微孔泡沫的力学与电磁屏蔽性能研究[D]. 山东大学, 2021. 004296. [19] Ugarte L, Gomez-Fernandez S, Tercjak A, et al. Strain sensitive conductive polyurethane foam/graphene nanocomposites prepared by impregnation method[J]. European Polymer Journal, 2017, 90(1): 323-333. [20] Liu H, Dong M Y, Huang W J, et al. Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing[J]. Journal of Materials Chemistry C, 2017, 5(1): 73-83. [21] Liu H T, Guo Y, Tian H F, et al. Fabrication of polyimide foams with superior mechanical and flame resistance properties utilizing the graft copolymerization between red phosphorus and graphene oxide[J]. Materials Science and Engineering B-advanced Functional Solid-state Materials, 2021,275: 115498. [22] Shen B, Li Y, Zhai W T, et al. Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding[J]. Acs Applied Materials & Interfaces, 2016, 8(12): 8050-8057. [23] Lu X Z, Yu T T, Meng F C, et al. Wide-Range and High-Stability Flexible Conductive Graphene/Thermoplastic Polyurethane Foam for Piezoresistive Sensor Applications[j]. Advanced Materials Technologies, 2021, 6(10): 2100248. [24] Chen D Q, Yang J Y, Chen G H. The physical properties of polyurethane/graphite nanosheets/carbon black foaming conducting nanocomposites[J]. Composites Part A-applied Science and Manufacturing, 2010, 41(11): 1636-1638. [25] Chen D Q, Chen G H. The conductive property of polyurethane/expanded graphite powder composite foams[J]. Journal of Reinforced Plastics and Composites, 2011, 30(9): 757-761. [26] Dehkharghani A M F, Divandari M. Investigation of electroless copper plating on polyurethane foam, as an initial step of open cell foam production process[J]. Transactions of The Institute of Metal Finishing, 2015, 93(4): 186-189. [27] Peng Y, Liu H Z, Li T, et al. Hybrid Metallic Foam with Superior Elasticity, High Electrical Conductivity, and Pressure Sensitivity[J]. Acs Applied Materials & Interfaces, 2020, 12(5): 6489-6495. [28] Muthukumar N, Thilagavathi G, Kannaian T. Polyaniline-coated polyurethane foam for pressure sensor applications[J]. High Performance Polymers, 2016, 28(3): 368-375. [29] 周歆如, 周筱雅, 马咏健, 胡铖烨, 赵晓曼, 洪剑寒, 韩潇. 导电聚苯胺/聚氨酯泡沫的制备及其压力传感性能[J]. 纺织学报, 2021, 42(04): 62-68. [30] Huang W, Dai K , Zhai Y , et al. Flexible and Lightweight Pressure Sensor Based on Carbon Nanotube/Thermoplastic Polyurethane Aligned Conductive Foam with Superior Compressibility and Stability[J]. ACS Appl Mater Interfaces, 2017:42266. [31] Enea D M, Simone A, Antonino V, et al. Piezoresistive and mechanical Behavior of CNT based polyurethane foam[J]. Journal of Composites Science .2020, 4(3). [32] Hodlur R M, Rabinal M K. Self-assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite[J]. Composites Science & Technology, 2014, 90:160-165. [33] Wei X, Cao X, Wang Y , et al. Conductive herringbone structure carbon nanotube/thermoplastic polyurethane porous foam tuned by epoxy for high performance flexible piezoresistive sensor[J]. Composites Science and Technology, 2017, 149(sep.8):166-177. [34] Yue Z, Ya B, Kza B, et al. Flexible and wearable carbon black/thermoplastic polyurethane foam with a pinnate-veined aligned porous structure for multifunctional piezoresistive sensors[J]. Chemical Engineering Journal, 2020, 382:122985. [35] 闻午,刘祥萱, 刘渊. 聚氨酯基雷达吸波材料研究进展[J]. 化学推进剂与高分子材料, 2014, 12(04): 27-31. [36] 李娟,邓京兰,王继辉.聚氨酯泡沫夹层复合材料的制备及其吸波性能研究[J]. 高科技纤维与应用, 2010, 35(02): 19-22. [37] 贺龙辉, 胡照文, 邓联文, 黄生祥, 刘胜, 贺君, 文瑞. 宽频高性能短切碳纤维/聚氨酯泡沫吸波材料制备[J]. 功能材料, 2015, 46(23): 23120-23123. [38]彭益菲. Cf/聚氨酯泡沫宽频吸波复合材料的制备与性能研究[D]. 哈尔滨工业大学, 2021. [39] 廖春荣, 熊峰, 李贤军, 吴义强, 罗勇锋. 导电聚合物在纤维状能源器件中的应用进展(英文)[J]. 物理化学学报, 2017, 33(02): 329-343. [40] 陆厚平. 一种镍与石墨烯复合增强电磁屏蔽效果的聚氨酯发泡胶, CN106065308A[P],2016,07. [41] Jiang Q, Liao X , Li J , et al. Flexible Thermoplastic Polyurethane/Reduced Graphene Oxide Composite Foams for Electromagnetic Interference Shielding with High Absorption Characteristic[J]. Composites Part A, Applied Science and Manufacturing, 2019, 123(7). [42] Yao Y, Jin S,Ma X , et al. Graphene-containing flexible polyurethane porous composites with improved electromagnetic shielding and flame retardancy[J]. Composites Science and Technology, 2020, 200(17):108457. [43] Sanati A, Raeissi K, Karimzadeh F. A cost-effective and green-reduced graphene oxide/polyurethane foam electrode for electrochemical applications[J]. FlatChem, 2020, 20: 100162. [44] 张建. 聚氨酯基碳复合材料的制备及其电化学性能研究[D]. 黑龙江大学, 2018. [45] Lee J H, Lee B G. Synthesis and mechanical analysis of conductive polyurethane foams containing graphene and nanotube particles[J]. Bulletin of Materials Science, 2021, 44 (2):1-9. [46] Caba V, Borgese L, Agnelli S, et al. A green and simple process to develop conductive polyurethane foams for biomedical applications[J]. International Journal of Polymeric Materials, 2018: 1-8. |
[1] | 韦代东, 李惠枝, 曾娟娟, 赵传国, 李士强. 生物基聚氨酯抗涂鸦自清洁涂料的制备及性能[J]. 中国塑料, 2023, 37(2): 15-21. |
[2] | 吴锋, 韩硕, 陈士宏, 王向东. PET开孔泡沫的制备及其吸油性能研究[J]. 中国塑料, 2023, 37(2): 22-30. |
[3] | 翁城武, 郑玉婴. 耐低温慢回弹聚氨酯海绵材料制备及性能研究[J]. 中国塑料, 2023, 37(2): 51-55. |
[4] | 王泽辉, 王振军, 王笑风, 杨博, 李帅. 配方组成对聚氨酯注浆材料抗压强度影响的研究[J]. 中国塑料, 2023, 37(2): 7-14. |
[5] | 张伟程, 胡祥, 罗鸿兴, 金卉, 游峰, 江学良, 姚楚. 中空玻璃微珠填充聚氨酯发泡材料的吸声性能与动态力学性能研究[J]. 中国塑料, 2023, 37(1): 38-45. |
[6] | 周新星, 郑玉婴, 陈乘鑫, 孔繁盛. 热塑性聚氨酯/石墨烯改性聚氨酯注浆材料的制备与性能研究[J]. 中国塑料, 2023, 37(1): 54-59. |
[7] | 张梦欣, 刘让同, 李亮, 李淑静, 刘淑萍. 聚氨酯掺杂铜粉涂层的电磁特征及其涂层织物的吸波性能[J]. 中国塑料, 2022, 36(9): 46-52. |
[8] | 杨金, 陈鹏然, 高培鑫. DIDOPO与POSS/EG协同阻燃环氧树脂泡沫及机理研究[J]. 中国塑料, 2022, 36(9): 38-45. |
[9] | 李娟, 李莹, 郭晓林, 张晨. 中国挤出聚苯乙烯(XPS)泡沫行业CO2混合发泡技术安全生产规范[J]. 中国塑料, 2022, 36(9): 160-166. |
[10] | 汤小明, 曹宁, 蒋岳航, 王倩, 王志彦, 李建华, 王亚涛, 连慧琴, 汪晓东, 崔秀国. 聚砜类燃料电池质子交换膜研究进展[J]. 中国塑料, 2022, 36(8): 146-158. |
[11] | 杨智, 奚望, 钱立军, 胡立双. 四元复合体系在硬质聚氨酯泡沫材料中的逐级释放阻燃行为研究[J]. 中国塑料, 2022, 36(8): 28-35. |
[12] | 张陶忠, 陈晓龙, 郝晓宇, 于福家. 滑石、CaCO3、BaSO4填充PP复合材料力学性能及界面相互作用对比[J]. 中国塑料, 2022, 36(8): 36-41. |
[13] | 郭孝磊, 罗静云, 丁欣, 王雨辰, 聂铭罕, 宋佳洁, 张艳娥, 胡晶. PHBV扩链改性及其发泡行为研究[J]. 中国塑料, 2022, 36(8): 73-79. |
[14] | 朱子轩, 刘海芬, 范家钊, 李华锋, 王力新. 光伏背板粘接材料和共挤粘接技术研究进展[J]. 中国塑料, 2022, 36(7): 174-186. |
[15] | 李凯泽, 辛勇. 改性碳纳米管增强热塑性聚氨酯复合材料的性能研究[J]. 中国塑料, 2022, 36(6): 1-5. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 58
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 510
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||