京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2020, Vol. 34 ›› Issue (12): 17-24.DOI: 10.19491/j.issn.1001-9278.2020.12.003
• Materials and Properties • Previous Articles Next Articles
Received:
2020-05-08
Online:
2020-12-26
Published:
2020-12-26
CLC Number:
GUO Haoran, CHEN Yunzhi∗, WANG Jiaoyang, ZHANG Zhengjian, SUN Lingze. Effect of Modified Xylan on Packaging Performance of PBAT/PLA Composites[J]. China Plastics, 2020, 34(12): 17-24.
序号 | PBAT/% | PLA/% | xylan/% | s?xylan/% |
---|---|---|---|---|
1 | 70.00 | 30.00 | 0 | 0 |
2 | 69.65 | 29.85 | 0.5 | - |
3 | 69.30 | 29.70 | 1 | - |
4 | 68.60 | 29.40 | 2 | - |
5 | 67.90 | 29.10 | 3 | - |
7 | 69.65 | 29.85 | - | 0.5 |
8 | 69.30 | 29.70 | - | 1 |
9 | 68.60 | 29.40 | - | 2 |
10 | 67.90 | 29.10 | - | 3 |
序号 | PBAT/% | PLA/% | xylan/% | s?xylan/% |
---|---|---|---|---|
1 | 70.00 | 30.00 | 0 | 0 |
2 | 69.65 | 29.85 | 0.5 | - |
3 | 69.30 | 29.70 | 1 | - |
4 | 68.60 | 29.40 | 2 | - |
5 | 67.90 | 29.10 | 3 | - |
7 | 69.65 | 29.85 | - | 0.5 |
8 | 69.30 | 29.70 | - | 1 |
9 | 68.60 | 29.40 | - | 2 |
10 | 67.90 | 29.10 | - | 3 |
s?xylan含量/% | Tg/℃ | Tm/℃ | ΔHm/J·g-1 | ΔXc/% |
---|---|---|---|---|
0 | 63.76 | 167.08 | 6.1448 | 21.9 |
0.5 | 64.31 | 167.28 | 6.9161 | 24.6 |
1 | 66.55 | 166.38 | 5.9000 | 21.0 |
2 | 62.86 | 166.06 | 5.6276 | 20.0 |
3 | 60.93 | 166.19 | 5.0792 | 18.1 |
s?xylan含量/% | Tg/℃ | Tm/℃ | ΔHm/J·g-1 | ΔXc/% |
---|---|---|---|---|
0 | 63.76 | 167.08 | 6.1448 | 21.9 |
0.5 | 64.31 | 167.28 | 6.9161 | 24.6 |
1 | 66.55 | 166.38 | 5.9000 | 21.0 |
2 | 62.86 | 166.06 | 5.6276 | 20.0 |
3 | 60.93 | 166.19 | 5.0792 | 18.1 |
1 | NAYAK S K. Biodegradable PBAT Starch Nanocomposites[J].Journal of Macromolecular Science: Part D ⁃ Reviews in Polymer Processing, 2010, 49(14):1 406⁃1 418. |
2 | 潘宏伟. 聚对苯二甲酸丁二醇⁃co⁃己二酸丁二醇酯(PBAT)生物降解膜的制备及性质研究[D]. 长春: 长春工业大学, 2016. |
3 | MOUSTAFA H, GUIZANI C, DUPONT C, et al. Utilization of Torrefied Coffee Grounds as Reinforcing Agent to Produce High⁃Quality Biodegradable PBAT Composites for Food Packaging Applications[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2):1 906⁃1 916. |
4 | SATHORNLUCK S, CHOOCHOTTIROS C. Modification of Epoxidized Natural Rubber as a PLA Toughening Agent[J]. Journal of Applied Polymer Science, 2019, 136(48):48 267. |
5 | YEH J T, TSOU C H, HUANG C Y, et al. Compatible and Crystallization Properties of Poly(lactic acid)/Poly(butylene adipate⁃co⁃terephthalate) Blends[J]. Journal of Applied Polymer Science, 2010, 116(2):680⁃687. DOI:10.1002/app.30 907. |
6 | NAJAFI N, HEUZEY M C, CARREAU P J. Polylactide (PLA)⁃Clay Nanocomposites Prepared by Melt Compounding in the Presence of a Chain Extender[J]. Composites Science and Technology, 2012, 72(5):608⁃615. |
7 | NAJAFI N, HEUZEY M C, CARREAU P J, et al. Control of Thermal Degradation of Polylactide (PLA)⁃Clay Nanocomposites Using Chain Extenders[J]. Polymer Degradation and Stability, 2012, 97(4):554⁃565. |
8 | MOHAPATRA A K, MOHANTY S, NAYAK S K. Study of Thermo⁃Mechanical and Morphological Behaviour of Biodegradable PLA/PBAT/Layered Silicate Blend Nanocomposites[J]. Journal of Polymers and the Environment, 2014, 22(3):398⁃408. |
9 | AI X, LI X, YU Y L, et al. The Mechanical, Thermal, Rheological and Morphological Properties of PLA/PBAT Blown Films by Using Bis(Tert⁃Butyl Dioxy Isopropyl) Benzene as Crosslinking Agent[J]. Polymer Engineering & Science, 2019, 59(S1):E227⁃E236. DOI:10.1002/pen.24 927. |
10 | 张国栋, 杨纪元, 冯新德, 等. 聚乳酸的研究进展[J]. 化学进展, 2000, 12(1):89⁃102. |
ZHANG G D, YANG J Y, FENG X D, et al. Progress in Study of Polylactides[J]. Progress in Chemistry, 2000, 12(1):89⁃102. | |
11 | 颜祥禹. PLA/PBAT基可生物降解共混薄膜的制备及性能研究[D]. 长春: 长春工业大学, 2017. |
12 | 艾 雪, 于银雷, 李 欣, 等. 交联改性PLA/PBAT吹塑薄膜性能的研究[J]. 塑料工业, 2018, 46(5):63⁃66,80. |
AI X, YU Y L, LI X, et al. Studying on the Properties of Crosslinked PLA/PBAT Blown Films[J]. China Plastics Industry, 2018, 46(5):63⁃66,80. | |
13 | 陈凤凤, 杨 成. 疏水改性玉米麸皮阿拉伯木聚糖的性能研究[J]. 日用化学工业, 2018, 48(3):134⁃139. |
CHEN F F, YANG C. Performance of Hydrophobic Modified Corn Bran Arabinoxylan[J]. China Surfactant Detergent & Cosmetics, 2018, 48(3):134⁃139. | |
14 | STEPAN A M, ANSARI F, BERGLUND L, et al. Nanofibrillated Cellulose Reinforced Acetylated Arabinoxylan Films[J]. Composites Science and Technology, 2014, 98:72⁃78. |
15 | GRÖNDAHL M, TELEMAN A, GATENHOLM P. Effect of Acetylation on the Material Properties of Glucuronoxylan from Aspen Wood[J]. Carbohydrate Polymers, 2003, 52(4):359⁃366. |
16 | CUNHA A G, GANDINI A. Turning Polysaccharides into Hydrophobic Materials: A Critical Review. Part 1. Cellulose[J]. Cellulose, 2010, 17(5):875⁃889. |
17 | MOUSTAFA H, GUIZANI C, DUFRESNE A. Sustainable Biodegradable Coffee Grounds Filler and Its Effect on the Hydrophobicity, Mechanical and Thermal Properties of Biodegradable PBAT Composites[J]. Journal of Applied Polymer Science, 2017, 134(8): DOI:10.1002/app.44498. |
18 | 梁健飞. 咖啡渣和稻壳灰生物质在生物可降解塑料中的应用研究[D]. 广州: 华南理工大学, 2019. |
[1] | ZHOU Shuyi, ZHU Min, LIU Yiying, CAO Shuhui, CAI Qixuan, NIE Hui, ZHANG Yuxia, ZHOU Hongfu. Research progress in polymer⁃based hemostatic materials [J]. China Plastics, 2022, 36(7): 74-84. |
[2] | LI Mengqi, CHEN Yajun. Research progress in flame⁃retardancy of poly(lactic acid) with nanomaterials [J]. China Plastics, 2022, 36(4): 102-114. |
[3] | LIU Wen, SHI Wenzhao, LIU Jinshu, LU Shaofeng, ZHOU Hongjuan. Research progress in electro⁃active shape memory composite materials [J]. China Plastics, 2022, 36(4): 175-189. |
[4] | LIU Yankuan, GU Zichen, WANG Zhiping. Preparation technology and development trend of continuous⁃fiber⁃reinforced thermoplastic prepregs [J]. China Plastics, 2022, 36(2): 172-181. |
[5] | HE Mingfeng, WANG Ke, WANG Qiyang, YANG Xiao, GUO Hong, HU Boyang, LI Baoan. Study on polyvinylidene fluoride/matrix⁃like groups⁃modified graphene composites with high thermal conductivity [J]. China Plastics, 2022, 36(2): 41-48. |
[6] | LI Bo, GONG Jun, JIN Xueyi, MENG Xiaoyu. Effect of carbon nanotube modification method on properties of polyamide 11 [J]. China Plastics, 2022, 36(2): 61-66. |
[7] | MAO Chen, LIU Fan, E Yi, ZOU Shuyan, GONG Xinghou. Preparation and effect of nano CoFe2O4 on crystallization performance of PLA [J]. China Plastics, 2022, 36(1): 9-14. |
[8] | SUN Guohua, ZHANG Xin, WU Dezhen, HOU Lianlong. Research Progress in High⁃performance Polyimide Composites [J]. China Plastics, 2021, 35(9): 147-155. |
[9] | ZHA Yan, ZHENG Fangli, XIAO Jian, YANG Weimin, XIE Pengcheng. Research on the Application of Co⁃simulation in the Reduced Design of Automotive Injection Parts [J]. China Plastics, 2021, 35(8): 112-116. |
[10] | CAI Xiaofang, YUAN Hang, DIAO Xiaoqian, LI Ziyi, FENG Di. Analysis of Talc Migration in Polylactic Acid Cup Cover for Food Contact [J]. China Plastics, 2021, 35(7): 91-96. |
[11] | CHEN Shiqi, WANG Xuanlun. Preparation and Properties of Polypropylene Random Copolymer/Nano⁃SiO2 Composites [J]. China Plastics, 2021, 35(10): 56-59. |
[12] | Xinyu SONG, Yunxuan WENG, Caili ZHANG, Zhigang HUANG. Study on Modification and Properties of Polylactic Acid/ Bamboo Flour Composites [J]. China Plastics, 2020, 34(7): 21-29. |
[13] | Yu ZU, Yanan REN, Jing HU. Study on Modification of Polylactic Acid/Poly(3⁃Hydroxybutyric Acid⁃co⁃3⁃Hydroxyvalate) Blends as 3D⁃Printing Filament [J]. China Plastics, 2020, 34(7): 36-43. |
[14] | Wei ZHAI, Jianjian SUN, Bohua WANG, Chong TENG, Shiyu XIE, Fenghao HAO, Yujuan JIN. Study on Toughening Modification of PLA/PPC Blends with Hyperbranched Ethylenediamine Trazine Polymer [J]. China Plastics, 2020, 34(6): 27-33. |
[15] | Juan LIANG, Zewen JIANG, Weiguang GONG, Xin MENG. Effect of Phosphite⁃Functionalized Polysilsesquioxane on Flame Retardancy of Polylactic Acid [J]. China Plastics, 2020, 34(6): 7-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||