京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2021, Vol. 35 ›› Issue (2): 63-70.DOI: 10.19491/j.issn.1001-9278.2021.02.011
• Processing and Application • Previous Articles Next Articles
WANG Duyang1, CAI Zhennan2, HUANG Xingyuan1,3(), WANG Long1, LI Mengshan4
Received:
2020-08-21
Online:
2021-02-26
Published:
2021-02-22
CLC Number:
WANG Duyang, CAI Zhennan, HUANG Xingyuan, WANG Long, LI Mengshan. Diffusion Coefficient of Supercritical Carbon Dioxide in Polystyrene Melt[J]. China Plastics, 2021, 35(2): 63-70.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2021.02.011
170 ℃ | 180 ℃ | 190 ℃ | |||
---|---|---|---|---|---|
压力/ MPa | 密度/ g·cm-3 | 压力/MPa | 密度/ g·cm-3 | 压力/MPa | 密度/ g·cm-3 |
7.5 | 0.989 9 | 7.5 | 0.983 8 | 7.5 | 0.977 6 |
8.5 | 0.990 8 | 8.5 | 0.984 7 | 8.5 | 0.978 6 |
9.5 | 0.991 7 | 9.5 | 0.985 7 | 9.5 | 0.979 6 |
170 ℃ | 180 ℃ | 190 ℃ | |||
---|---|---|---|---|---|
压力/ MPa | 密度/ g·cm-3 | 压力/MPa | 密度/ g·cm-3 | 压力/MPa | 密度/ g·cm-3 |
7.5 | 0.989 9 | 7.5 | 0.983 8 | 7.5 | 0.977 6 |
8.5 | 0.990 8 | 8.5 | 0.984 7 | 8.5 | 0.978 6 |
9.5 | 0.991 7 | 9.5 | 0.985 7 | 9.5 | 0.979 6 |
170 ℃ | 180 ℃ | 190 ℃ | |||
---|---|---|---|---|---|
压力/ MPa | 溶解度/ g·g-1 | 压力/MPa | 溶解度/ g·g-1 | 压力/MPa | 溶解度/ g·g-1 |
7.5 | 0.025 9 | 7.5 | 0.023 6 | 7.5 | 0.021 7 |
8.5 | 0.029 3 | 8.5 | 0.026 8 | 8.5 | 0.024 6 |
9.5 | 0.032 8 | 9.5 | 0.030 0 | 9.5 | 0.027 5 |
170 ℃ | 180 ℃ | 190 ℃ | |||
---|---|---|---|---|---|
压力/ MPa | 溶解度/ g·g-1 | 压力/MPa | 溶解度/ g·g-1 | 压力/MPa | 溶解度/ g·g-1 |
7.5 | 0.025 9 | 7.5 | 0.023 6 | 7.5 | 0.021 7 |
8.5 | 0.029 3 | 8.5 | 0.026 8 | 8.5 | 0.024 6 |
9.5 | 0.032 8 | 9.5 | 0.030 0 | 9.5 | 0.027 5 |
扩散系数/×10-8 m2·s-1 | 平均差/m2·s-1 |
---|---|
1 | 0.005 753 |
2 | 0.003 074 |
3 | 0.002 152 |
4 | 0.001 919 |
5 | 0.002 120 |
6 | 0.002 290 |
7 | 0.002 425 |
8 | 0.002 527 |
9 | 0.002 607 |
10 | 0.002 671 |
扩散系数/×10-8 m2·s-1 | 平均差/m2·s-1 |
---|---|
1 | 0.005 753 |
2 | 0.003 074 |
3 | 0.002 152 |
4 | 0.001 919 |
5 | 0.002 120 |
6 | 0.002 290 |
7 | 0.002 425 |
8 | 0.002 527 |
9 | 0.002 607 |
10 | 0.002 671 |
温度/ ℃ | 压力/ MPa | 等效扩散系数/ ×10-8 m2·s-1 | 模拟值/ g·g-1 | 实验值/ g·g-1 | 相对误差/% |
---|---|---|---|---|---|
170 | 7.5 | 3.7 | 0.025 88 | 0.028 43 | 8.969 4 |
8.5 | 3.8 | 0.029 34 | 0.032 21 | 8.910 3 | |
9.5 | 4.8 | 0.032 82 | 0.036 96 | 11.201 3 | |
180 | 7.5 | 4.0 | 0.023 65 | 0.026 21 | 9.767 3 |
8.5 | 5.6 | 0.026 81 | 0.030 81 | 12.982 8 | |
9.5 | 7.4 | 0.029 98 | 0.033 23 | 9.780 3 | |
190 | 7.5 | 6.3 | 0.021 73 | 0.024 34 | 10.723 1 |
8.5 | 6.7 | 0.024 64 | 0.029 31 | 15.933 1 | |
9.5 | 7.6 | 0.027 56 | 0.031 23 | 11.751 5 |
温度/ ℃ | 压力/ MPa | 等效扩散系数/ ×10-8 m2·s-1 | 模拟值/ g·g-1 | 实验值/ g·g-1 | 相对误差/% |
---|---|---|---|---|---|
170 | 7.5 | 3.7 | 0.025 88 | 0.028 43 | 8.969 4 |
8.5 | 3.8 | 0.029 34 | 0.032 21 | 8.910 3 | |
9.5 | 4.8 | 0.032 82 | 0.036 96 | 11.201 3 | |
180 | 7.5 | 4.0 | 0.023 65 | 0.026 21 | 9.767 3 |
8.5 | 5.6 | 0.026 81 | 0.030 81 | 12.982 8 | |
9.5 | 7.4 | 0.029 98 | 0.033 23 | 9.780 3 | |
190 | 7.5 | 6.3 | 0.021 73 | 0.024 34 | 10.723 1 |
8.5 | 6.7 | 0.024 64 | 0.029 31 | 15.933 1 | |
9.5 | 7.6 | 0.027 56 | 0.031 23 | 11.751 5 |
170 ℃ | 180 ℃ | 190 ℃ | |||
---|---|---|---|---|---|
压力/MPa | 平衡时间误差/% | 压力/MPa | 平衡时间误差/% | 压力/MPa | 平衡时间误差/% |
7.5 | 14.556 | 7.5 | 14.750 | 7.5 | 12.903 |
8.5 | 12.613 | 8.5 | 5.263 | 8.5 | 14.815 |
9.5 | 8.692 | 9.5 | 4.898 | 9.5 | 16.174 |
170 ℃ | 180 ℃ | 190 ℃ | |||
---|---|---|---|---|---|
压力/MPa | 平衡时间误差/% | 压力/MPa | 平衡时间误差/% | 压力/MPa | 平衡时间误差/% |
7.5 | 14.556 | 7.5 | 14.750 | 7.5 | 12.903 |
8.5 | 12.613 | 8.5 | 5.263 | 8.5 | 14.815 |
9.5 | 8.692 | 9.5 | 4.898 | 9.5 | 16.174 |
1 | 胡 军, 周南桥. 连续挤出成型PVC微孔塑料的研究现状[J]. 塑料科技, 2010, 38(9):81⁃85. |
HU J, ZHOU N Q. Research Progress on PVC Microcellular Plastics with Continuous Extrusion Molding[J]. Plastics Science and Technology, 2010, 38(9):81⁃85. | |
2 | 张华, 黄汉雄. 微孔注塑成型研究进展[J]. 塑料科技, 2010, 38(1): 97⁃102. |
ZHANG H, HUANG H X. Research Progress of Microcellular Injection Moulding [J]. Plastics Science and Technology, 2010, 38(1): 97⁃102. | |
3 | SATO Y, YURUGI M, FUJIWARA K, et al. Solubilities of Carbon Dioxide and Nitrogen in Polystyrene under High Temperature and Pressure[J]. Fluid Phase Equilibria, 1996, 125(1/2):129⁃138. |
4 | 冯 刚, 张朝阁, 江 平. 微孔注塑成型技术研究与应用进展[J]. 塑料工业, 2014, 42(10):9⁃12. |
FENG G, ZHANG C G, JIANG P. Research Progress and Application of Microcellular Injection Molding Techno⁃logy[J]. China Plastics Industry, 2014, 42(10):9⁃12. | |
5 | 徐兴家, 甄卫军, 赵 玲. 超临界CO2发泡制备聚氯乙烯微孔材料研究进展[J]. 中国塑料, 2019, 33(7): 117⁃129. |
XU J X, ZHEN W J, ZHAO L. Research Progress in Preparation of Microcellular PVC Foamed with Supercritical CO2 [J]. China Plastics, 2019, 33(7): 117⁃129. | |
6 | 程 博, 齐暑华, 吴 波, 等. 超临界CO2发泡微孔塑料的研究进展[J]. 中国塑料, 2010, 24(12):14⁃20. |
CHENG B, QI S H, WU B, et al. Study Progess of Microcellular Plastics Foamed by Supercritical CO2[J]. China Plastics, 2010, 24(12):14⁃20. | |
7 | 高云长, 周南桥, 彭响方. 微孔发泡过程中聚合物/超临界CO2均相体系形成的研究[J]. 工程塑料应用, 2003, 31(10): 32⁃34. |
GAO Y C, ZHOU N Q, PENG X F. Study on the Formation of Polymer/Supercritical Carbon Dioxide Solution in the Foaming Processing of Microcellular Plastics[J]. Engineering Plastics Application, 2003, 31(10): 32⁃34. | |
8 | 蔡金平, 黄兴元, 柳和生. 微孔塑料成型加工的研究[J]. 塑料工业, 2007, 35(9):7⁃10. |
CAI J P, HUANG X Y, LIU H S. Study of Moulding Process of Microcellular Plastics[J]. China Plastics Industry, 2007, 35(9):7⁃10. | |
9 | SATO Y, FUJIWARA K, TAKIKAWA T, et al. Solubilities and Diffusion Coefficients of Carbon Dioxide and Nitrogen in Polypropylene, High⁃Density Polyethylene, and Polystyrene under High Pressures and Temperatures[J]. Fluid Phase Equilibria, 1999, 162(1/2):261⁃276. |
10 | SATO Y, TAKIKAWA T, SORAKUBO A, et al. Solubility and Diffusion Coefficient of Carbon Dioxide in Biodegradable Polymers[C]//2000, 39:4 813⁃4 819. |
11 | SATO Y, TAKIKAWA T, TAKISHIMA S, et al. Solubilities and Diffusion Coefficients of Carbon Dioxide in Poly(vinyl acetate) and Polystyrene[J]. The Journal of Supercritical Fluids, 2001, 19(2):187⁃198. |
12 | 高 龙. 微孔发泡材料气泡长大与表面质量的数值预测[D]. 长春: 吉林大学, 2016:41⁃49. |
13 | LI D C, LIU T, ZHAO L, et al. Solubility and Diffusivity of Carbon Dioxide in Solid⁃State Isotactic Polypropylene by the Pressure⁃Decay Method[J]. Industrial & Engineering Chemistry Research, 2009, 48(15):7 117⁃7 124. |
14 | LI G, LI H, WANG J, et al. Investigating the Solubility of CO2 in Polypropylene Using Various EOS Models[J]. Cellular Polymers, 2006, 25(4):237⁃248. |
15 | 杨李慧. 超临界二氧化碳在聚氨酯体系中溶解和扩散行为的分子动力学模拟研究[D]. 上海:华东理工大学, 2017:41⁃49. |
16 | TANG M, HUANG W H, CHEN Y P. Comparisons of the Sorption and Diffusion of Supercritical Carbon Dioxide into Polycarbonate and Polysulfone[J]. Journal of the Chinese Institute of Chemical Engineers, 2007, 38(5/6):419⁃424. |
17 | AUBERT J H. Solubility of Carbon Dioxide in Polymers by the Quartz Crystal Microbalance Technique[J]. Journal of Supercritical Fluids, 1998, 11(3):163⁃172. |
18 | HUSSAIN Y, WU Y T, AMPAW P J, et al. Dissolution of Polymer Films in Supercritical Carbon Dioxide Using a Quartz Crystal Microbalance[J]. Journal of Supercritical Fluids, 2007, 42(2):255⁃264. |
19 | PANTOULA M, PANAYIOTOU C. Sorption and Swelling in Glassy Polymer/Carbon Dioxide Systems[J]. The Journal of Supercritical Fluids, 2006, 37(2):254⁃262. |
20 | 吴晓丹, 彭玉成, 蔡业彬. 超临界CO2在聚合物中的溶解度和扩散性研究[J]. 中国塑料, 2005, 19(7):59⁃63. |
WU X D, PENG Y C, CAI Y B. Investigation on Solubility and Diffusion Coefficients of Supercritical CO2 in Polymers[J]. China Plastics, 2005, 19(7):59⁃63. | |
21 | 宋海华, 尹小勇. 模拟扩散系数的分子动力学方法[J]. 物理化学学报, 2005, 18(5): 719⁃723. |
SONG H H, YIN X Y. Molecular Dynamics Method for Simulating Diffusivities[J]. Chinese Journal of Chemical Physics, 2005, 18(5):719⁃723. | |
22 | 李毅梅, 车小军, 孙 炜. 323K超临界CO2自扩散系数的分子动力学模拟[J]. 云南化工, 2008, 35(6):1⁃3. |
LI Y M, CHE X J, SUNWEI. Molecular Dynamic Simulation of Self⁃Diffusion Coefficient of Supercritical Carbon Dioxide[J]. Yunnan Chemical Technology, 2008, 35(6):1⁃3. | |
23 | 黄文建, 孙振范, 常勇慧, 等. 超临界二氧化碳自扩散系数的模拟研究[J]. 广东化工, 2014, 41(4):3,12. |
HUANG W J, SUN Z F, CHANG Y H, et al. Simulation of Self⁃Diffusion Coefficients of Supercritical Carbon Dioxide[J]. Guangdong Chemical Industry, 2014, 41(4):3,12. | |
24 | WANG D Y, HUANG X Y, CAI Z N, et al. Experimental and Simulation Study on the Dissolved Amount and Dissolution Rate of Supercritical CO2 in Polystyrene Melt[J]. ACS Omega, 2019, 4(27):22 464⁃22 474. |
25 | SANCHEZ I C, LACOMBE R H. An Elementary Molecular Theory of Classical Fluids. Pure Fluids[J]. Journal of Physical Chemistry, 1976, 80(21):2 352⁃2 362. |
26 | LACOMBE R H, SANCHEZ I C. Statistical Thermodynamics of Fluid Mixtures[J]. Journal of Physical Chemistry, 1976, 80(23):2 568⁃2 580. |
27 | SANCHEZ I C, LACOMBE R H. Statistical Thermodynamics of Polymer Solutions[J]. Macromolecules, 1978, 11(6):1 145⁃1 156. |
28 | 陈力骅. 超临界二氧化碳诱导非晶聚合物溶胀和玻璃化温度退化行为研究[D]. 上海:华东理工大学, 2011:38⁃40. |
29 | AREERAT S, FUNAMI E, HAYATA Y, et al. Measurement and Prediction of Diffusion Coefficients of Supercritical CO2 in Molten Polymers[J]. Polymer Engineering and Science, 2004, 44(10):1 915⁃1 924. |
30 | Nikitin L N, Gallyamov M O, Vinokur R A, et al. Swelling and Impregnation of Polystyrene Using Supercritical Carbon Dioxide[J]. Journal of Supercritical Fluids, 2003, 26: 263⁃273. |
31 | ZHONG H, SUN S, XI Z, et al. Solubility of CO2 in Molten Poly(ethylene terephthalate). Journal of Industrial and Engineering Chemistry, 2013, 64:1513⁃1519. |
32 | AIONICESEI E, ŠKERGET M, ŽKNEZ. Measurement of CO2 Solubility and Diffusivity in Poly(l⁃lactide) and Poly(d, l⁃lactide⁃co⁃glycolide) by Magnetic Suspension Balance[J]. Journal of Supercritical Fluids, 2008, 47(2):296⁃301. |
33 | ELENA A; MOJCA S; ZELJKO K. Measurement and Modeling of the CO2 Solubility in Poly(ethylene glycol) of Different Molecular Weights. Journal of Chemical and Engineering Data, 2008, 53:185⁃188. |
[1] | LIN Wen, ZHAO Jingjing, SU Tingting, WANG Zhanyong. Research progress in biodegradation of polystyrene [J]. China Plastics, 2022, 36(7): 143-149. |
[2] | JI Feng, GONG Weihua, ZHANG Yan, LUO Shuiyuan, YU Qingyu, ZHU Junqiu, GUO Jiangbin. Preparation of biodegradable PBAT foaming particles by supercritical carbon dioxide autoclave foaming technology [J]. China Plastics, 2022, 36(5): 122-126. |
[3] | YANG Musen, QIAN Lijun, WANG Jingyu, ZHAO Zhen, WANG Guangyu, XIN Xiaohua. Synergistic effect of triphenyl phosphate and methyloctabromoether on flame retardancy of polystyrene [J]. China Plastics, 2022, 36(5): 36-42. |
[4] | ZHAO Xinxin, JIN Xiaodong, SHI Yan, SUN Shibing, LYU Feng, TIAN Yingliang, ZHAO Zhiyong. Surface modification of extruded polystyrene based on ultraviolet⁃ozone irradiation [J]. China Plastics, 2022, 36(5): 8-13. |
[5] | GUO Yiming, DONG Xiaochen, LIANG Shitong, WANG Sen, LIU Jichun. Effects of graphite type and size on flame retardancy of high⁃impact polystyrene and it’s action mechanism [J]. China Plastics, 2022, 36(3): 26-32. |
[6] | JIN Fujing, HAO Yunan, JIAO Hongwen, ZHAO Hongyu. Application and Standard Interpretation of Graphite⁃modified Extruded Polystyrene Foam Boards for Thermal Insulation of Building [J]. China Plastics, 2021, 35(9): 109-115. |
[7] | XUE Yu, YIN Dexian, XIANG Lubing, ZHOU Yuan, YANG Xueyue, ZHOU Hongfu. Study on Microcellular Foaming Behavior of Chain⁃Extended Poly(butylene succinate) [J]. China Plastics, 2021, 35(8): 125-130. |
[8] | JIAN Ranran, YANG Weimin, MOHINI Sain. Study on Chemical Foaming Properties of Recycled⁃Carbon⁃Fiber⁃Reinforced Polystyrene Through Torsion Extrusion [J]. China Plastics, 2021, 35(8): 88-93. |
[9] | YANG Wenjie, HE Jiawen, ZHU Hanbin, WANG Sisi, LI Xiping. Mechanical Properties and Foaming Behaviors of Graphene⁃reinforced Poly(lactic acid) [J]. China Plastics, 2021, 35(6): 26-32. |
[10] | ZHANG Yihui, CHEN Shihong, WANG Conglong, WANG Xiangdong. Study on Polyetherimide Foaming Behavior under Homogeneous Nucleation [J]. China Plastics, 2021, 35(5): 65-71. |
[11] | ZHAO Yan, PAN Xiang, LIU Bengang. Properties and Applications of Expendable Polystyrene Geofoam [J]. China Plastics, 2021, 35(5): 97-106. |
[12] | CAI Hengfang, SUN Ling. Molecular Dynamics Study on Effects of Temperature and Shear Rate on CO2 Diffusion Behavior in Foaming Process of Injection Molding [J]. China Plastics, 2021, 35(3): 83-89. |
[13] | XIONG Huixia, ZHAO Wenjie. Properties and Microstructure of PS⁃g⁃PBA Emulsion⁃modified Cement Mortars [J]. China Plastics, 2021, 35(2): 29-33. |
[14] | LI Shaoyuan, SUN Ling, CAI Hengfang. Molecular Dynamics Simulation of Diffusion Behavior of CO2 and O2 in PLA/PVDF Blend [J]. China Plastics, 2021, 35(10): 51-55. |
[15] | CHEN Kexin, CHEN Shuning, LIN Jianrong. One Pot Synthesis of Janus Nanosheet and Its Compatibilizating Effect on PS/TiO2 Composites [J]. China Plastics, 2021, 35(10): 8-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||