京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2022, Vol. 36 ›› Issue (11): 51-58.DOI: 10.19491/j.issn.1001-9278.2022.11.008
• Materials and Properties • Previous Articles Next Articles
LI Guili1,2(), YU Qiuran1, HAO Mingliang2, LI Haimei2
Received:
2022-08-08
Online:
2022-11-26
Published:
2022-11-25
CLC Number:
LI Guili, YU Qiuran, HAO Mingliang, LI Haimei. Effect of surface treatment of ramie fiber on crystallization behavior and tensile properties of poly(lactic acid)[J]. China Plastics, 2022, 36(11): 51-58.
样品 | Tg/℃ | Tc1/℃ | Tc2/℃ | Tm/℃ | ΔHc/J·g-1 | ΔHm/J·g-1 | Xc/% |
---|---|---|---|---|---|---|---|
PLA/RF⁃0 | 59.8 | 101.0 | 153.7 | 167.0 | 17.5 | 30.9 | 16.8 |
PLA/RF⁃3 | 60.1 | 100.3 | 154.0 | 167.2 | 26.6 | 34.5 | 9.9 |
PLA/RF⁃6 | 60.4 | 105.2 | 153.3 | 166.9 | 24.5 | 60.3 | 7.7 |
PLA/RF⁃9 | 60.0 | 101.2 | 154.7 | 166.6 | 30.8 | 34.5 | 4.6 |
PLA/RF⁃0# | 60.4 | 101.8 | 153.9 | 166.8 | 11.4 | 31.1 | 24.7 |
PLA/RF⁃3# | 60.3 | 100.3 | 153.4 | 166.6 | 9.2 | 34.3 | 31.5 |
PLA/RF⁃6# | 60.5 | 106.1 | 153.6 | 166.8 | 13.7 | 30.3 | 20.8 |
PLA/RF⁃9# | 58.7 | 102.9 | 154.2 | 166.2 | 13.3 | 35.2 | 27.6 |
样品 | Tg/℃ | Tc1/℃ | Tc2/℃ | Tm/℃ | ΔHc/J·g-1 | ΔHm/J·g-1 | Xc/% |
---|---|---|---|---|---|---|---|
PLA/RF⁃0 | 59.8 | 101.0 | 153.7 | 167.0 | 17.5 | 30.9 | 16.8 |
PLA/RF⁃3 | 60.1 | 100.3 | 154.0 | 167.2 | 26.6 | 34.5 | 9.9 |
PLA/RF⁃6 | 60.4 | 105.2 | 153.3 | 166.9 | 24.5 | 60.3 | 7.7 |
PLA/RF⁃9 | 60.0 | 101.2 | 154.7 | 166.6 | 30.8 | 34.5 | 4.6 |
PLA/RF⁃0# | 60.4 | 101.8 | 153.9 | 166.8 | 11.4 | 31.1 | 24.7 |
PLA/RF⁃3# | 60.3 | 100.3 | 153.4 | 166.6 | 9.2 | 34.3 | 31.5 |
PLA/RF⁃6# | 60.5 | 106.1 | 153.6 | 166.8 | 13.7 | 30.3 | 20.8 |
PLA/RF⁃9# | 58.7 | 102.9 | 154.2 | 166.2 | 13.3 | 35.2 | 27.6 |
样品 | Φ/℃·min-1 | Tp/℃ | ∆ω/℃ | t1/2 /min |
---|---|---|---|---|
PLA/RF⁃0 | 10.0 | 97.3 | 54.7 | 3.1 |
5.0 | 112.0 | 51.8 | 4.6 | |
2.5 | 121.5 | 29.9 | 6.6 | |
1.0 | 130.8 | 15.6 | 9.5 | |
PLA/RF⁃3 | 10.0 | 100.1 | 52.7 | 2.9 |
5.0 | 113.2 | 51.5 | 4.3 | |
2.5 | 122.2 | 27.8 | 6.4 | |
1.0 | 131.4 | 14.8 | 9.0 | |
PLA/RF⁃6 | 10.0 | 96.7 | 55.4 | 3.3 |
5.0 | 109.1 | 54.8 | 4.9 | |
2.5 | 120.2 | 31.0 | 7.2 | |
1.0 | 128.6 | 16.8 | 11.0 |
样品 | Φ/℃·min-1 | Tp/℃ | ∆ω/℃ | t1/2 /min |
---|---|---|---|---|
PLA/RF⁃0 | 10.0 | 97.3 | 54.7 | 3.1 |
5.0 | 112.0 | 51.8 | 4.6 | |
2.5 | 121.5 | 29.9 | 6.6 | |
1.0 | 130.8 | 15.6 | 9.5 | |
PLA/RF⁃3 | 10.0 | 100.1 | 52.7 | 2.9 |
5.0 | 113.2 | 51.5 | 4.3 | |
2.5 | 122.2 | 27.8 | 6.4 | |
1.0 | 131.4 | 14.8 | 9.0 | |
PLA/RF⁃6 | 10.0 | 96.7 | 55.4 | 3.3 |
5.0 | 109.1 | 54.8 | 4.9 | |
2.5 | 120.2 | 31.0 | 7.2 | |
1.0 | 128.6 | 16.8 | 11.0 |
样品 | Xc (t)/% | F(T)/K∙min a-1 | a |
---|---|---|---|
PLA/RF⁃0 | 20 | 43.55 | 1.85 |
40 | 80.64 | 1.96 | |
60 | 134.29 | 2.05 | |
80 | 214.22 | 2.11 | |
PLA/RF⁃3 | 20 | 41.35 | 1.92 |
40 | 73.26 | 2.01 | |
60 | 115.35 | 2.05 | |
80 | 185.86 | 2.07 | |
PLA/RF⁃6 | 20 | 44.79 | 1.77 |
40 | 83.60 | 1.88 | |
60 | 140.19 | 1.99 | |
80 | 222.30 | 2.08 |
样品 | Xc (t)/% | F(T)/K∙min a-1 | a |
---|---|---|---|
PLA/RF⁃0 | 20 | 43.55 | 1.85 |
40 | 80.64 | 1.96 | |
60 | 134.29 | 2.05 | |
80 | 214.22 | 2.11 | |
PLA/RF⁃3 | 20 | 41.35 | 1.92 |
40 | 73.26 | 2.01 | |
60 | 115.35 | 2.05 | |
80 | 185.86 | 2.07 | |
PLA/RF⁃6 | 20 | 44.79 | 1.77 |
40 | 83.60 | 1.88 | |
60 | 140.19 | 1.99 | |
80 | 222.30 | 2.08 |
1 | Liu J L, Yang Y F, Ding J N. The value of China’s legislation on plastic pollution prevention in 2020[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 108(4):601⁃608. |
2 | Chae Y, An Y J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review[J]. Environmental Pollution, 2018, 240:387⁃395. |
3 | 李岩, 李倩. 植物纤维增强复合材料力学高性能化与多功能化研究[J]. 固体力学学报, 2017, 38(3):215⁃243. |
LI Y, LI Q. High mechanical perormance and multi⁃functionlities of plant fiber reinforced composites[J]. Chinese Journal of solid mechanics, 2017, 38(3):215⁃243. | |
4 | Siakeng R, Jawaid M, Ariffin H, et al. Mechanical, dynamic, and thermomechanical properties of coir/pineapple leaf fiber reinforced polylactic acid hybrid biocomposites[J]. Polymer Composites, 2019, 40(5):2 000⁃2 011. |
5 | Wang H, Memon H, Hassan Elwathig A M, et al. Rheological and dynamic mechanical properties of abutilon natural straw and polylactic acid biocomposites[J]. International Journal of Polymer Science, 2019:8732520. |
6 | Rajeshkumar G, Seshadri S A, Devnani G L, et al. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites⁃A comprehensive review[J]. Journal of Cleaner Production, 2021, 310: 127483. |
7 | 文泽伟, 刘福亚, 崔晓杰, 等. 机械力改性芦苇纤维及其对聚乳酸复合材料的阻燃性能研究[J]. 中国塑料, 2021, 35(11):38⁃43. |
WEN Z W, LIU F Y, CUI X J, et al. Mechanical modification of polylactic acid with reed fibers for flame⁃retardant application[J]. China Plastics, 2021, 35(11):38⁃43. | |
8 | 夏学莲, 史向阳, 赵海鹏, 等. γ射线辐照对PLA/Flax复合材料结晶行为的影响[J]. 包装工程, 2020, 41(13): 154⁃160. |
XIA X L, SHI X Y, ZHAO H P, et al. Effect of γ⁃ray irradiation on crystallization behavior of PLA/flax composites[J]. Packing Engineering, 2020, 41(13): 154⁃160. | |
9 | Li G L, Hao M L, Chen Y F, et al. Nonisothermal crystallization behavior and mechanical properties of poly(lactic acid)/ramie fiber biocomposites[J]. Polymer Composites, 2022, 43(5):2 759⁃2 770. |
10 | Sawpan M A, Pickering K L, Fernyhough A. Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(3): 310⁃319. |
11 | Orue A, Eceiza A, Arbelaiz A. The effect of sisal fiber surface treatments, plasticizer addition and annealing process on the crystallization and the thermo⁃mechanical proper⁃ties of poly(lactic acid) composites[J]. Industrial Crops and Products, 2018, 118:321⁃333. |
12 | Li G L, Yang B L, Han W J, et al. Tailoring the thermal and mechanical properties of injection⁃molded poly(lactic acid) parts through annealing[J]. Journal Applied Polymer Science, 2021, 138(2):49648. |
13 | Wang G L, Zhang D M, Li B, et al. Strong and thermal⁃resistance glass fiber⁃reinforced polylactic acid (PLA) composites enabled by heat treatment[J]. International Journal of Biological Macromolecules, 2019, 129: 448⁃459. |
14 | Deng L, Xu C, Wang X H, et al. Supertoughened polylactide binary blend with high heat deflection temperature achieved by thermal annealing above the glass transition temperature[J]. ACS Sustainable Chemistry & Enginee⁃ring, 2017, 6(1): 480⁃490. |
15 | Nagarajan V, Zhang K, Misra M, et al. Overcoming the fundamental challenges in improving the impact strength and crystallinity of PLA biocomposites: influence of nuclea⁃ting agent and mold temperature[J]. ACS Applied Materials & Interfaces, 2015, 7(21): 112 003⁃112 014. |
16 | Mazzanti V, De Luna M S, Pariante R, et al. Natural fiber⁃induced degradation in PLA⁃hemp biocomposites in the molten state[J]. Composites Part A: Applied Science and Manufacturing, 2020, 137:105990. |
17 | Qian S P, Mao H L, Sheng K C, et al. Effect of low⁃concentration alkali solution pretreatment on the properties of bamboo particles reinforced poly(lactic acid) composites[J]. Journal of Applied Polymer Science, 2013, 3:1 667⁃1 674. |
18 | Fischer E W, Sterzel H J, Wegner G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions[J]. Steinkopff, 1973, 251(11):980⁃990. |
19 | Li G L, Hou X Q, Li H M, et al. Interfacial cylindrite of poly(lactic acid) induced by pulling a single glass fiber[J]. European Polymer Journal, 2019, 114:127⁃133. |
20 | Cebe P, Hong S D. Crystallization behavior of poly(etheretherketone)[J]. Polymer, 1986, 27(8):1 183⁃1 192. |
21 | 张静, 王洪, 邹威, 等. 改性纤维素纳米晶对聚酰胺6结晶行为的影响[J]. 中国塑料, 2020, 43(6):1⁃6. |
ZHANG J, WANG H, ZOU W, et al. Effect of modified cellulose nanocrystals on crystallization behavior of polyamide 6[J]. China Plastics, 2020,43(6):1⁃6. | |
22 | Avrami M. Kinetics of phase change. ii transformation⁃time relations for random distribution of nuclei[J]. Journal of Chemical Physics, 1940, 8(2): 212⁃224. |
23 | Senthamaraikannan P, Saravanakumar S S, Sanjay M R, et al. Physico⁃chemical and thermal properties of untreated and treated Acacia planifrons bark fibers for composite reinforcement[J]. Materials Letters, 2019, 240: 221⁃224. |
24 | 丰波, 谢俊康, 李富强, 等. PE⁃LD/桉木粉复合材料的制备及其性能研究[J]. 中国塑料, 2018, 32(9):42⁃48. |
FENG B, XIE J K, LI F Q, et l. Preparation and properties of wood plastic composites based on PE⁃LD and eucalyptus flour powders[J]. China Plastics, 2018,32(9):42⁃48. |
[1] | MENG Xin, WANG Xiaolong, GONG Weiguang, JIN Yi. Preparation of three⁃sources⁃in⁃one shell⁃core structural flame retardants and its application in poly(lactic acid) [J]. China Plastics, 2022, 36(9): 96-104. |
[2] | SONG Danyang, ZHENG Hongjuan, LI Yilong. Research progress in PLA⁃based oil⁃water separation materials [J]. China Plastics, 2022, 36(9): 187-192. |
[3] | QU Yuting, WANG Limei, QI Bin. Effect of poly(ethylene glycol) on properties of poly(lactic acid)/starch nanocrystal composites [J]. China Plastics, 2022, 36(8): 56-61. |
[4] | SHEN Xuemei, ZHU Xiaolong, HU Yanchao, SONG Renyuan, ZHANG Xianfeng, LI Xi. Fabrication and properties of poly(lactic acid))/ibuprofen microspheres through electrostatic spray method [J]. China Plastics, 2022, 36(7): 61-67. |
[5] | SHAO Linying, XI Yuewei, WENG Yunxuan. Research progress in degradation characteristics of poly(lactic acid) composites [J]. China Plastics, 2022, 36(6): 155-164. |
[6] | WANG Rongchen, ZHANG Heng, SUN Huanwei, DUAN Shuxia, QIN Zixuan, LI Han, ZHU Feichao, ZHANG Yifeng. Research progress in preparation and hydrophilic modification of polylactic acid nonwovens for medical and health applications [J]. China Plastics, 2022, 36(5): 158-166. |
[7] | LI Rui, JIANG Yanfeng, WU Shuang, AN Yanjie, JIANG Zeyu, ZHANG Mingqiang. Microstructure and thermal characterization of polypropylene special material for cast films through temperature rising elution fractionation [J]. China Plastics, 2022, 36(3): 53-57. |
[8] | SUN Tao, YANG Qing, HU Jian, WANG Yangyang, LIU Bo, YUN Xueyan, DONG Tungalag. Preparation and properties of poly(lactic acid⁃co⁃glycolic acid) film [J]. China Plastics, 2022, 36(2): 33-40. |
[9] | ZHANG Zewen, ZHU Enci, ZHANG Xixiang, WEI Lijuan, ZHAO Shicheng. Preparation of two carboxylate nucleating agents and their nucleation effect on polypropylene [J]. China Plastics, 2022, 36(12): 100-107. |
[10] | YANG Shangshan, SHANG Pengpeng, XU Jing, XIE Jiazhuo, ZHANG Kun, ZHANG Lili. Preparation and characterizations of biodegradable PBAT/PLA/biomass garbage bags [J]. China Plastics, 2022, 36(11): 127-132. |
[11] | WEI Zongchen, XI Yuewei, WENG Yunxuan. Research Progress in Poly(lactic acid)⁃based Composite Materials for Bone Tissue Engineering [J]. China Plastics, 2021, 35(9): 136-146. |
[12] | TANG Yujing, WANG Yaqiao, NI Jingyue, WANG Conglong, WANG Xiangdong. Effect of Stereoscopic Composite Crystals on Foaming Behavior of PLA [J]. China Plastics, 2021, 35(8): 117-124. |
[13] | LI Yuzhu, YAO Lihui, YE Shiqiang, LYU Guoyong, LIU Panpan, XU Longfei, QIU Dan. Research Progress on Degradation Performance of Biodegradable Materials in Water Environment [J]. China Plastics, 2021, 35(7): 103-114. |
[14] | DUAN Xuyuan, ZHENG Hongjuan. Research Progress in Modified Poly(lactic acid) Foaming Technology [J]. China Plastics, 2021, 35(7): 134-139. |
[15] | YANG Wenjie, HE Jiawen, ZHU Hanbin, WANG Sisi, LI Xiping. Mechanical Properties and Foaming Behaviors of Graphene⁃reinforced Poly(lactic acid) [J]. China Plastics, 2021, 35(6): 26-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||