京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2021, Vol. 35 ›› Issue (6): 26-32.DOI: 10.19491/j.issn.1001-9278.2021.06.005
• Materials and Properties • Previous Articles Next Articles
YANG Wenjie, HE Jiawen, ZHU Hanbin, WANG Sisi, LI Xiping()
Received:
2020-01-04
Online:
2021-06-26
Published:
2021-06-23
CLC Number:
YANG Wenjie, HE Jiawen, ZHU Hanbin, WANG Sisi, LI Xiping. Mechanical Properties and Foaming Behaviors of Graphene⁃reinforced Poly(lactic acid)[J]. China Plastics, 2021, 35(6): 26-32.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2021.06.005
1 | LI B, ZHAO G Q, WANG G L, et al. A Green Strategy to Regulate Cellular Structure and Crystallization of Poly(lactic acid) Foams Based on Pre⁃Isothermal Cold Crystallization and CO2 Foaming[J].International Journal of Biolo⁃gical Macromolecules, 2019,129:171⁃180. |
2 | 魏诗艺, 唐韵韬, 柴晨泽 ,等.聚乳酸开孔材料研究进展[J].中国塑料,2020,34(10):100⁃109. |
WEI S Y, TANG Y T, CHAI C Z, et al. Research Pro⁃gress in Poly(lactic acid)Open⁃Cell Materials[J]. China Plastics, 2020, 34(10): 100⁃109. | |
3 | NOFAR M, PARK C B. Poly(lactic acid) Foaming[J]. Progress in Polymer Science, 2014,39(10):1 721⁃1 741. |
4 | LI B, MA X W, ZHAO G Q, et al. Green Fabrication Method of Layered and Open⁃Cell Polylactide Foams for Oil⁃Sorption Via Pre⁃Crystallization and Supercritical CO2⁃Induced Melting[J]. The Journal of Supercritical Fluids, 2020,162:104854. |
5 | GENG L H, LI L W, MI H Y, et al. Superior Impact Toughness and Excellent Storage Modulus of Poly(lactic acid) Foams Reinforced by Shish⁃Kebab Nanoporous Structure[J]. ACS Applied Materials & Interfaces,2017,9(25): 21 071⁃21 076. |
6 | TIWARY P, PARK C B, KONTOPOULOU M. Transition from Microcellular to Nanocellular PLA Foams by Controlling Viscosity, Branching and Crystallization[J]. European Polymer Journal,2017,91: 283⁃296. |
7 | LIU J Y, LOU L J, YU W, et al. Long Chain Branching Polylactide: Structures and Properties[J]. Polymer,2010,51(22): 5 186⁃5 197. |
8 | WANG L Y, JING X B, CHENG H B, et al. Blends of Linear and Long⁃Chain Branched Poly(L⁃lactide)s with High Melt Strength and Fast Crystallization Rate[J]. Industrial & Engineering Chemistry Research, 2012, 51(30):10 088⁃10 099. |
9 | YIN D X, MI J G, ZHOU H F, et al. Microcellular Foaming Behaviors of Chain Extended Poly (butylene succinate)/Polyhedral Oligomeric Silsesquioxane Composite Induced by Isothermal Crystallization[J]. Polymer Degradation and Stability,2019,167: 228⁃240. |
10 | KUANG T R, CHANG L Q, CHEN F, et al. Facile Preparation of Lightweight High⁃Strength Biodegradable Polymer/Multi⁃Walled Carbon Nanotubes Nanocomposite Foams for Electromagnetic Interference Shielding[J]. Carbon, 2016, 105:305⁃313. |
11 | WU D F, LV Q L, FENG S H, et al. Polylactide Composite Foams Containing Carbon Nanotubes and Carbon Black: Synergistic Effect of Filler on Electrical Conductivity[J]. Carbon,2015,95: 380⁃387. |
12 | KAKROODI A R, KAZEMI Y, DING W D, et al. Poly(lactic acid)⁃Based in Situ Microfibrillar Composites with Enhanced Crystallization Kinetics, Mechanical Properties, Rheological Behavior, and Foaming Ability[J]. Biomacromolecules,2015,16(12): 3 925⁃3 935. |
13 | DING W D, JAHANI D, CHANG E, et al. Development of PLA/Cellulosic Fiber Composite Foams using Injection Molding: Crystallization and Foaming Behaviors[J]. Composites Part A,2016,83: 130⁃139. |
14 | AMELI A, NOFAR M, JAHANI D, et al. Development of High Void Fraction Polylactide Composite Foams Using Injection Molding: Crystallization and Foaming Behaviors[J]. Chemical Engineering Journal, 2015, 262:78⁃87. |
15 | WANG G L, ZHAO G Q, WANG S, et al. Injection⁃Molded Microcellular PLA/Graphite Nanocomposites with Dramatically Enhanced Mechanical and Electrical Properties for Ultra⁃Efficient EMI Shielding Applications[J]. Journal of Materials Chemistry C, 2018, 6:6 847⁃6 859. |
16 | KUANG T R, MI H Y, FU D J, et al. Fabrication of Poly(lactic acid)/Graphene Oxide Foams with Highly Oriented and Elongated Cell Structure via Unidirectional Foaming Using Supercritical Carbon Dioxide[J]. Industrial & Engineering Chemistry Research, 2015,54(2):758⁃768. |
17 | GOODARZI V, FASIHI M, GARMABI H, et al. Microstructure, Mechanical and Electrical Characterizations of Bimodal and Nanocellular Polypropylene/Graphene Nanoplatelet Composite Foams[J]. Materials Today Communications, 2020, 25:101447. |
18 | KIM J M, KIM J H, AHN J H, et al. Synthesis of Nanoparticle⁃Enhanced Polyurethane Foams and Evaluation of Mechanical Characteristics[J]. Composites Part B,2018,136:28⁃33. |
19 | ANTUNES M, GEDLER G, ABBASI H, et al. Graphene Nanoplatelets as a Multifunctional Filler for Polymer Foams[J]. Materials Today: Proceedings,2016,3:233⁃239. |
20 | JIANG T W, KUILA T, KIM N H, et al. Enhanced Mechanical Properties of Silanized Silica Nanoparticle Attached Graphene Oxide/Epoxy Composites[J]. Compo⁃sites Science and Technology, 2013,79:115⁃125. |
21 | KASHI S, GUPTA R K, BAUM T, et al. Morphology, Electromagnetic Properties and Electromagnetic Interference Shielding Performance of Poly Lactide/Graphene Nanoplatelet Nanocomposites[J]. Materials & Design, 2016,95:119⁃126. |
22 | YIN X D, BAO J J. Glass Fiber Coated with Graphene Constructed Through Electrostatic Self‐Assembly and Its Application in Poly(lactic acid) Composite[J]. Journal of Applied Polymer Science, 2016,133(15):43 296⁃43 305. |
23 | LI Y, YIN D X, LIU W, et al. Fabrication of Biodegradable Poly (lactic acid)/Carbon Nanotube Nanocomposite Foams: Significant Improvement on Rheological Property and Foamability[J]. International Journal of Biological Macromolecules, 2020,163:1 175⁃1 186. |
24 | WANG G L, ZHAO G Q, DONG G W, et al. Lightweight and Strong Microcellular Injection Molded PP/Talc Nanocomposite[J]. Composites Science and Technology, 2018,168:38⁃46. |
25 | ZHU B, BAI T T, WANG P, et al. Selective Dispersion Of Carbon Nanotubes and Nanoclay in Biodegradable Poly(ε⁃caprolactone)/Poly(lactic acid) Blends with Improved Toughness, Strength and Thermal Stability[J]. International Journal of Biological Macromolecules, 2020,153:1 272⁃1 280. |
26 | KUANG T R, LI K C, CHEN B Y, et al. Selective Dispersion of Carbon Nanotubes and Nanoclay in Biodegradable Poly(e⁃caprolactone)/Poly(lactic acid) Blends with Improved Toughness, Strength and Thermal Stability[J]. Composites Part B, 2017,123:112⁃123. |
27 | WANG G L, ZHANG D M, WAN G P, et al. Glass Fiber Reinforced PLA Composite with Enhanced Mechanical Properties, Thermal Behavior, and Foaming Ability[J]. Polymer, 2019,181:121803. |
28 | WANG J C, CHAI J L, WANG G L, et al. Strong and Thermally Insulating Polylactic Acid/Glass Fiber Composite Foam Fabricated by Supercritical Carbon Dioxide Foaming[J]. International Journal of Biological Macromolecules, 2019,138:144⁃155. |
29 | ZHAO J C, ZHAO Q L, WANG C D, et al. High Thermal Insulation and Compressive Strength Polypropylene Foams Fabricated by High⁃Pressure Foam Injection Molding and Mold Opening of Nano⁃Fibrillar Composites[J]. Materials & Design, 2017,131:1⁃11. |
30 | ZHAO J C, WANG G L, WANG C D, et al. Ultra⁃Lightweight, Super Thermal⁃Insulation and Strong PP/CNT Microcellular Foams[J]. Composites Science and Technology, 2020,191:108084. |
[1] | SHEN Xuemei, ZHU Xiaolong, HU Yanchao, SONG Renyuan, ZHANG Xianfeng, LI Xi. Fabrication and properties of poly(lactic acid))/ibuprofen microspheres through electrostatic spray method [J]. China Plastics, 2022, 36(7): 61-67. |
[2] | SHAO Linying, XI Yuewei, WENG Yunxuan. Research progress in degradation characteristics of poly(lactic acid) composites [J]. China Plastics, 2022, 36(6): 155-164. |
[3] | JI Feng, GONG Weihua, ZHANG Yan, LUO Shuiyuan, YU Qingyu, ZHU Junqiu, GUO Jiangbin. Preparation of biodegradable PBAT foaming particles by supercritical carbon dioxide autoclave foaming technology [J]. China Plastics, 2022, 36(5): 122-126. |
[4] | WANG Rongchen, ZHANG Heng, SUN Huanwei, DUAN Shuxia, QIN Zixuan, LI Han, ZHU Feichao, ZHANG Yifeng. Research progress in preparation and hydrophilic modification of polylactic acid nonwovens for medical and health applications [J]. China Plastics, 2022, 36(5): 158-166. |
[5] | SUN Tao, YANG Qing, HU Jian, WANG Yangyang, LIU Bo, YUN Xueyan, DONG Tungalag. Preparation and properties of poly(lactic acid⁃co⁃glycolic acid) film [J]. China Plastics, 2022, 36(2): 33-40. |
[6] | WEI Zongchen, XI Yuewei, WENG Yunxuan. Research Progress in Poly(lactic acid)⁃based Composite Materials for Bone Tissue Engineering [J]. China Plastics, 2021, 35(9): 136-146. |
[7] | TANG Yujing, WANG Yaqiao, NI Jingyue, WANG Conglong, WANG Xiangdong. Effect of Stereoscopic Composite Crystals on Foaming Behavior of PLA [J]. China Plastics, 2021, 35(8): 117-124. |
[8] | XUE Yu, YIN Dexian, XIANG Lubing, ZHOU Yuan, YANG Xueyue, ZHOU Hongfu. Study on Microcellular Foaming Behavior of Chain⁃Extended Poly(butylene succinate) [J]. China Plastics, 2021, 35(8): 125-130. |
[9] | LI Yuzhu, YAO Lihui, YE Shiqiang, LYU Guoyong, LIU Panpan, XU Longfei, QIU Dan. Research Progress on Degradation Performance of Biodegradable Materials in Water Environment [J]. China Plastics, 2021, 35(7): 103-114. |
[10] | DUAN Xuyuan, ZHENG Hongjuan. Research Progress in Modified Poly(lactic acid) Foaming Technology [J]. China Plastics, 2021, 35(7): 134-139. |
[11] | SUN Dongbao, LU Qin, LU Xinyu, JIA Wangyi, CAO Shang. Study on Interface Modification Methods and Properties of PLA/Rice Husk Powder Composites [J]. China Plastics, 2021, 35(6): 80-84. |
[12] | ZHANG Bo, WANG Xiaofeng, GUO Meng, BAI Zhiyuan, REN Cuihong, HAN Wenjuan, UYAMA Hiroshi, LI Qian. Study on Surface Carboxylation Modification and Cytocompatibility of Poly(Lactic Acid) [J]. China Plastics, 2021, 35(5): 17-23. |
[13] | XU Jiayi. Preparation and Properties of Hypromellose⁃toughened Poly(lactic acid) Composites [J]. China Plastics, 2021, 35(5): 59-64. |
[14] | ZHANG Yihui, CHEN Shihong, WANG Conglong, WANG Xiangdong. Study on Polyetherimide Foaming Behavior under Homogeneous Nucleation [J]. China Plastics, 2021, 35(5): 65-71. |
[15] | CAI Hengfang, SUN Ling. Molecular Dynamics Study on Effects of Temperature and Shear Rate on CO2 Diffusion Behavior in Foaming Process of Injection Molding [J]. China Plastics, 2021, 35(3): 83-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||