京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2023, Vol. 37 ›› Issue (12): 14-22.DOI: 10.19491/j.issn.1001-9278.2023.12.003
• Materials and Properties • Previous Articles Next Articles
SUN Zijia(), LUO Cuimei, WANG Qihang, WANG Xujie, MU Jun(
)
Received:
2023-06-16
Online:
2023-12-26
Published:
2023-12-26
CLC Number:
SUN Zijia, LUO Cuimei, WANG Qihang, WANG Xujie, MU Jun. Preparation of ODA⁃TA@L⁃CNC and its effect on multifunctional PLA composite films[J]. China Plastics, 2023, 37(12): 14-22.
薄膜编号 | PLA 质量/g | L⁃CNC 质量/g | ODA⁃TA@ L⁃CNC质量/g |
---|---|---|---|
PLA | 8.00 | 0 | 0 |
0.5% L⁃CNC/PLA | 7.96 | 0.04 | - |
1% L⁃CNC/PLA | 7.92 | 0.08 | - |
1.5% L⁃CNC/PLA | 7.88 | 0.12 | - |
0.5% ODA⁃TA@L⁃CNC/PLA | 7.96 | - | 0.04 |
1% ODA⁃TA@L⁃CNC/PLA | 7.92 | - | 0.08 |
1.5% ODA⁃TA@L⁃CNC/PLA | 7.88 | - | 0.12 |
薄膜编号 | PLA 质量/g | L⁃CNC 质量/g | ODA⁃TA@ L⁃CNC质量/g |
---|---|---|---|
PLA | 8.00 | 0 | 0 |
0.5% L⁃CNC/PLA | 7.96 | 0.04 | - |
1% L⁃CNC/PLA | 7.92 | 0.08 | - |
1.5% L⁃CNC/PLA | 7.88 | 0.12 | - |
0.5% ODA⁃TA@L⁃CNC/PLA | 7.96 | - | 0.04 |
1% ODA⁃TA@L⁃CNC/PLA | 7.92 | - | 0.08 |
1.5% ODA⁃TA@L⁃CNC/PLA | 7.88 | - | 0.12 |
1 | Manfra L, Marengo V, Libralato G, et al. Biodegradable polymers: A real opportunity to solve marine plastic pollution?[J]. Journal of Hazardous Materials, 2021, 416: 125763. |
2 | Zhou L, Ke K, Yang M B, et al. Recent progress on chemical modification of cellulose for high mechanical⁃performance poly (lactic acid)/cellulose composite: a review[J]. Composites Communications, 2021, 23: 100548. |
3 | Rigotti D, Soccio M, Dorigato A, et al. Novel biobased polylactic acid/poly (pentamethylene 2,5⁃furanoate) blends for sustainable food packaging[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(41): 13 742⁃13 750. |
4 | Zuo M D, Pan N Y, Liu Q J, et al. Three⁃dimensionally printed polylactic acid/cellulose acetate scaffolds with antimicrobial effect[J]. RSC advances, 2020, 10(5): 2 952⁃2 958. |
5 | Pretula J, Slomkowski S, Penczek S. Polylactides⁃methods of synthesis and characterization[J]. Advanced Drug Delivery Reviews, 2016, 107: 3⁃16. |
6 | Mondal K, Sakurai S, Okahisa Y, et al. Effect of cellulose nanocrystals derived from dunaliella tertiolecta marine green algae residue on crystallization behaviour of poly (lactic acid) [J]. Carbohydrate Polymers, 2021, 261: 117881. |
7 | 董茂林, 陈李栋, 黄六莲, 等. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023: 1⁃17. |
DONG M L, CHEN L D, HUANG L L, et al. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications[J]. CIESC Journal, 2023: 1⁃17. | |
8 | Trifol J, Quintero DCM, Moriana R. Pine cone biorefinery: integral valorization of residual biomass into lignocellulose nanofibrils (LCNF)⁃reinforced composites for packaging[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(5): 2 180⁃2 190. |
9 | Chihaoui B, Tarres Q, Delgado⁃Aguilar M, et al. Lignin⁃containing cellulose fibrils as reinforcement of plasticized PLA biocomposites produced by melt processing using PEG as a carrier[J]. Industrial Crops and Products, 2022, 175: 114287. |
10 | Xu Y Z, Zheng D Y, Chen X J, et al. Mussel⁃inspired polydopamine⁃modified cellulose nanocrystal fillers for the preparation of reinforced and UV⁃shielding poly (lactic acid) films[J]. Journal of Materials Research and Technology, 2022, 19: 4 350⁃4 359. |
11 | Yan W T, Shi M Q, Dong C X, Applications of tannic acid in membrane technologies : a review[J]. Advances in Colloid and Interface Science, 2020, 284: 102267. |
12 | Sileika T S, Barrett D G, Zhang R, et al. Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine[J]. Angewandte Chemie International Edition, 2013, 52(41): 10 766⁃10 770. |
13 | 国家质量监督检验检疫总局和国家标准化管理委员会. 塑料拉伸性能的测试 第3部分: 薄膜和薄片的试验条件 [S]. 北京: 中国标准出版社, 2006. |
14 | 杨 旭, 方 健, 覃 敏, 等. 壳聚糖/结冷胶双层膜制备工艺优化及表征[J]. 中国塑料, 2022, 36(11): 14⁃23. |
YANG X, FANG J, QIN M, et al. Preparation process optimization and characterization of chitosan/gellan gum bilayer films[J]. China Plastics, 2022, 36(11): 14⁃23. | |
15 | Shang H, Xu K K, Li X Y, et al. UV⁃protective and high⁃transparency poly (lactic acid) biocomposites for ecofriendly packaging of perishable fruits[J]. International Journal of Biological Macromolecules, 2022, 222: 927⁃937. |
16 | Hu Z, Berry R M, Pelton R, et al. One⁃pot water⁃based hydrophobic surface modification of cellulose nanocrystals using plant polyphenols[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5 018⁃5 026. |
17 | Li B, Whalen J J, Humayun M S, et al. Reversible bioadhesives using tannic acid primed thermally⁃responsive polymers[J]. Advanced Functional Materials, 2020, 30(5): 1907478. |
18 | Xiang H S, Wang B C, Zhong M Q, et al. Sustainable and versatile superhydrophobic cellulose nanocrystals[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(18): 5 939⁃5 948. |
19 | Sunanda R, Zhai L D, Hai L V, et al. One⁃step nanocellulose coating converts tissue paper into an efficient separation membrane[J]. Cellulose, 2018, 25(9): 4 871⁃4 886. |
20 | Ali A, Yu L, Liu H S, et al. Preparation and characterization of starch⁃based composite films reinforced by corn and wheat hulls[J]. Journal of Applied Polymer Science, 2017, 134(32): 45159. |
21 | Yue Y Y, Zhou C J, French A D, et al. Comparative properties of cellulose nano⁃crystals from native and mercerized cotton fibers[J]. Cellulose, 2012, 19(4): 1 173⁃1 187. |
22 | Huang Y X, Lin Q Q, Yu Y L, et al. Functionalization of wood fibers based on immobilization of tannic acid and in situ complexation of Fe (Ⅱ) ions[J]. Applied Surface Science, 2020, 510: 145436. |
23 | Majdoub M, Essamlali Y, Amadine O, et al. Octadecylamine as chemical modifier for tuned hydrophobicity of surface modified cellulose: toward organophilic cellulose nanocrystals[J]. Cellulose, 2021, 28(12): 7 717⁃7 734. |
24 | Santos F A, Iulianelli G C V, Tavares M I S, Effect of microcrystalline and nanocrystals cellulose fillers in materials based on PLA matrix[J]. Polymer Testing, 2017, 61: 280⁃288. |
25 | Wang X, Jia Y, Liu Z, et al. Influence of the lignin content on the properties of poly (lactic acid)/lignin⁃containing cellulose nanofibrils composite films[J]. Polymers, 2018, 10(9): 1 013. |
26 | 姜秀龙. 强韧耐热聚乳酸纳米复合膜材料制备及性能研究[D]. 东华大学, 2022. |
27 | Yang W J, Dominici F, Fortunati E, et al. Melt free radical grafting of glycidyl methacrylate (GMA) onto fully biodegradable poly (lactic) acid films: effect of cellulose nanocrystals and a masterbatch process[J]. RSC Advances, 2015, 5(41): 32 350⁃32 357. |
28 | Yetis F, Liu, X Q, Sampson W, et al. Acetylation of lignin containing microfibrillated cellulose and its reinforcing effect for polylactic acid[J]. European Polymer Journal, 2020, 134: 109803. |
29 | Kai D, Zhang K Y, Jiang L, et al. Sustainable and antioxidant lignin⁃polyester copolymers and nanofibers for potential healthcare applications[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 6 016⁃6 025. |
30 | Leite L S F, Pham C, Bilatto S, et al. Effect of tannic acid and cellulose nanocrystals on antioxidant and antimicrobial properties of gelatin films[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(25): 8 539⁃8 549. |
31 | Sun C, Li C X, Li H Y, et al. Modified cellulose nanocrystals enhanced the compatibility between PLA and PBAT to prepare a multifunctional composite film[J]. Journal of Polymers and the Environment, 2022,30(8): 3 139⁃3 149. |
32 | Cui B Y, Liu L X, Li S, et al. Bio⁃inspired, UV⁃blocking, water⁃stable and antioxidant lignin/cellulose films combining high strength, toughness and flexibility[J]. Materials Chemistry Frontiers, 2023, 7(5): 897⁃905. |
33 | Park S Y, Kim J Y, Youn H J, et al. Utilization of lignin fractions in UV resistant lignin⁃PLA biocomposites via lignin⁃lactide grafting[J]. International Journal of Biological Macromolecules, 2019, 138: 1 029⁃1 034. |
34 | Nair S S, Chen H Y, Peng Y, et al. Polylactic acid biocomposites reinforced with nanocellulose fibrils with high lignin content for improved mechanical, thermal, and barrier properties[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10 058⁃10 068. |
[1] | CUI Chengzhi, CAO Jinxing, LIU Jianlan, ZHANG Hui. Research progress in poly(lactic acid)/thermoplastic polyurethane blends [J]. China Plastics, 2023, 37(9): 75-82. |
[2] | GUAN Guotao, LIU Chenze, HE Shiquan, SONG Chaoyang, ZHANG Xiang, ZHAO Na, WANG Chao. Preparation and properties of antibacterial biodegradable poly (lactic acid) membrane [J]. China Plastics, 2023, 37(9): 8-13. |
[3] | WANG Lei, ZHAO Min, WENG Yunxuan, ZHANG Caili. Research progress in applications and performance prediction of machine learning in PLA processing [J]. China Plastics, 2023, 37(8): 127-134. |
[4] | ZHAO Mengmeng, YANG Hongjuan, SHEN Siyu, FENG Shuo, ZHANG Weimeng, HU Jing. Effect of poly(ethylene glycol diglycidyl ether) on compatibility and properties of PLA/PBAT blends [J]. China Plastics, 2023, 37(8): 20-27. |
[5] | DU Le, HU Yajie, HU Jian, SUN Tao, YUN Xueyan, DONG Tungalag. Preparation of poly (L⁃lactic acid)/chitosan films through UV curing and their thermal, mechanical and antibacterial properties [J]. China Plastics, 2023, 37(8): 38-44. |
[6] | GAO Qiqi, HAO Yanling, CHENG Long, SONG Xiaoshuang, WANG Shihui. Preparation and performance of corn starch/TiO2 nanocomposite films [J]. China Plastics, 2023, 37(2): 45-50. |
[7] | WANG Jie, ZHANG Weimeng, HU Jing. Effect of poly(lactic acid)⁃co⁃hydroxyacetic acid copolymer coating on performance of poly(lactic acid) 3D printed scaffolds [J]. China Plastics, 2023, 37(1): 1-7. |
[8] | MENG Xin, WANG Xiaolong, GONG Weiguang, JIN Yi. Preparation of three⁃sources⁃in⁃one shell⁃core structural flame retardants and its application in poly(lactic acid) [J]. China Plastics, 2022, 36(9): 96-104. |
[9] | SONG Danyang, ZHENG Hongjuan, LI Yilong. Research progress in PLA⁃based oil⁃water separation materials [J]. China Plastics, 2022, 36(9): 187-192. |
[10] | QU Yuting, WANG Limei, QI Bin. Effect of poly(ethylene glycol) on properties of poly(lactic acid)/starch nanocrystal composites [J]. China Plastics, 2022, 36(8): 56-61. |
[11] | XU Jie, ZHONG Jinfu, TONG Xiaoqian, LI Guangfu, FU Dongliang, LI Chengcheng. Preparation and performance of carboxyl⁃terminated tannic acid/gallic acid⁃based epoxy composite [J]. China Plastics, 2022, 36(7): 44-50. |
[12] | SHEN Xuemei, ZHU Xiaolong, HU Yanchao, SONG Renyuan, ZHANG Xianfeng, LI Xi. Fabrication and properties of poly(lactic acid))/ibuprofen microspheres through electrostatic spray method [J]. China Plastics, 2022, 36(7): 61-67. |
[13] | SHAO Linying, XI Yuewei, WENG Yunxuan. Research progress in degradation characteristics of poly(lactic acid) composites [J]. China Plastics, 2022, 36(6): 155-164. |
[14] | WANG Rongchen, ZHANG Heng, SUN Huanwei, DUAN Shuxia, QIN Zixuan, LI Han, ZHU Feichao, ZHANG Yifeng. Research progress in preparation and hydrophilic modification of polylactic acid nonwovens for medical and health applications [J]. China Plastics, 2022, 36(5): 158-166. |
[15] | XIE Yu, WANG Limei, QI Bin. Preparation and properties of crosslinked chitosan/montmorillonite composite films [J]. China Plastics, 2022, 36(3): 58-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||