
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2021, Vol. 35 ›› Issue (9): 55-63.DOI: 10.19491/j.issn.1001-9278.2021.09.009
收稿日期:
2021-02-05
出版日期:
2021-09-26
发布日期:
2021-09-23
基金资助:
PENG Fanchang1, CHEN Xiaosui1(), ZHANG Aiqing1, ZHOU Hongfu2(
)
Received:
2021-02-05
Online:
2021-09-26
Published:
2021-09-23
Contact:
CHEN Xiaosui,ZHOU Hongfu
E-mail:chenxiaosui@mail.scuec.edu.cn;zhouhongfu1982@sina.com
摘要:
采用羧基化碳纳米管(CNT?COOH)作为载体,以三氯氧磷(POCl3)和N,N?二氨基二苯甲烷(DDM)为反应单体,三乙胺为缚酸剂和催化剂,通过一步法(A2+B3)制备了3种不同厚度的超支化聚磷酰胺包覆碳纳米管(CNT/HBPPA)阻燃剂,并应用于环氧树脂(EP)中,探索了其对EP的力学及阻燃性能的影响。结果表明,随着CNT与(POCl3+DDM)投料比(1∶1.5~6)的增加,CNT/HBPPA的包覆厚度逐渐增大并交联,而其样品失重5 %时所对应的温度(T5 %)和残炭率逐渐下降,其中CNT/HBPPA?3对EP复合材料的阻燃和增强效果最佳,仅需2 %(质量分数,下同)可使其极限氧指数(LOI)值高达28.2 %,UL 94为V?1级,拉伸强度提高到53.28 MPa,冲击强度提高至11.19 kJ/m2,这主要是因为CNT/HBPPA表面的活性基团(—NH2)改善了其与EP基体间的界面相容性,提高了分散性,形成更加均匀的网络骨架结构,从而提高其阻燃和力学性能。在燃烧过程中,这种网状骨架结构有利于形成更致密、更高效的残炭层,有效地隔绝了热量和可燃挥发性降解物的传递,进而提高了阻燃效率。
中图分类号:
彭凡畅, 陈小随, 张爱清, 周洪福. 超支化聚磷酰胺包覆碳纳米管的可控制备及阻燃应用[J]. 中国塑料, 2021, 35(9): 55-63.
PENG Fanchang, CHEN Xiaosui, ZHANG Aiqing, ZHOU Hongfu. Controllable Preparation of Hyperbranched Polyphosphoramide Coated Carbon Nanotubes and Its Application for Flame Retardancy[J]. China Plastics, 2021, 35(9): 55-63.
样品名称 | CNT?COOH含量 | POCl3 含量 | DDM 含量 | 三乙胺 含量 |
---|---|---|---|---|
CNT/HBPPA?1.5 | 0.5 | 0.25 | 0.49 | 3.33 |
CNT/HBPPA?3 | 0.5 | 0.50 | 0.99 | 3.33 |
CNT/HBPPA?6 | 0.5 | 1.01 | 1.98 | 3.33 |
样品名称 | CNT?COOH含量 | POCl3 含量 | DDM 含量 | 三乙胺 含量 |
---|---|---|---|---|
CNT/HBPPA?1.5 | 0.5 | 0.25 | 0.49 | 3.33 |
CNT/HBPPA?3 | 0.5 | 0.50 | 0.99 | 3.33 |
CNT/HBPPA?6 | 0.5 | 1.01 | 1.98 | 3.33 |
样品 | 温度/℃ | 700 ℃ 残炭率/% | ||
---|---|---|---|---|
T5 %/℃ | Tmax1/℃ | Tmax2/℃ | ||
CNT | 613.0 | - | - | 91.8 |
HBPPA | 218.1 | 219.4 | 311.6 | 47.7 |
CNT/HBPPA?1.5 | 255.4 | 260.5 | - | 77.5 |
CNT/HBPPA?3 | 277.8 | 255.5 | 337.3 | 61.9 |
CNT/HBPPA?6 | 220.2 | 236.9 | 315.0 | 58.9 |
样品 | 温度/℃ | 700 ℃ 残炭率/% | ||
---|---|---|---|---|
T5 %/℃ | Tmax1/℃ | Tmax2/℃ | ||
CNT | 613.0 | - | - | 91.8 |
HBPPA | 218.1 | 219.4 | 311.6 | 47.7 |
CNT/HBPPA?1.5 | 255.4 | 260.5 | - | 77.5 |
CNT/HBPPA?3 | 277.8 | 255.5 | 337.3 | 61.9 |
CNT/HBPPA?6 | 220.2 | 236.9 | 315.0 | 58.9 |
样品名称 | UL 94等级 | ||
---|---|---|---|
1 % | 2 % | 3 % | |
纯EP | 无等级 | - | - |
EP/CNT?COOH | 无等级 | 无等级 | 无等级 |
EP/CNT/HBPPA?1.5 | 无等级 | 无等级 | V?2 |
EP/CNT/HBPPA?3 | V?2 | V?1 | V?1 |
EP/CNT/HBPPA?6 | V?1 | V?1 | V?1 |
样品名称 | UL 94等级 | ||
---|---|---|---|
1 % | 2 % | 3 % | |
纯EP | 无等级 | - | - |
EP/CNT?COOH | 无等级 | 无等级 | 无等级 |
EP/CNT/HBPPA?1.5 | 无等级 | 无等级 | V?2 |
EP/CNT/HBPPA?3 | V?2 | V?1 | V?1 |
EP/CNT/HBPPA?6 | V?1 | V?1 | V?1 |
样品 | 热降解温度 | 700 ℃残炭率/% | ||
---|---|---|---|---|
T5 %/℃ | Tmax/℃ | 实验值 | 理论值 | |
EP | 294.9 | 379.9 | 19.7 | - |
EP/2 %CNT?COOH | 364.3 | 383.7 | 21.0 | 21.1 |
EP/2 %CNT/HBPPA?1.5 | 357.3 | 383.3 | 21.2 | 20.8 |
EP/2 %CNT/HBPPA?3 | 353.6 | 381.2 | 22.0 | 20.5 |
EP/2 %CNT/HBPPA?6 | 352.0 | 379.3 | 23.2 | 20.5 |
样品 | 热降解温度 | 700 ℃残炭率/% | ||
---|---|---|---|---|
T5 %/℃ | Tmax/℃ | 实验值 | 理论值 | |
EP | 294.9 | 379.9 | 19.7 | - |
EP/2 %CNT?COOH | 364.3 | 383.7 | 21.0 | 21.1 |
EP/2 %CNT/HBPPA?1.5 | 357.3 | 383.3 | 21.2 | 20.8 |
EP/2 %CNT/HBPPA?3 | 353.6 | 381.2 | 22.0 | 20.5 |
EP/2 %CNT/HBPPA?6 | 352.0 | 379.3 | 23.2 | 20.5 |
拉伸强度/MPa | 冲击强度/ kJ·m-2 | 断裂 伸长率/% | |
---|---|---|---|
纯EP | 25.90±4.70 | 9.07±0.26 | 7.38±0.41 |
EP/2 %CNT?COOH | 41.28±0.17 | 11.17±0.46 | 5.99±0.24 |
EP/2 %CNT/HBPPA?1.5 | 48.59±4.61 | 11.23±1.08 | 5.64±0.39 |
EP/2 %CNT/HBPPA?3 | 53.28±1.62 | 11.19±1.02 | 7.31±0.51 |
EP/2 %CNT/HBPPA?6 | 35.68±2.26 | 7.75±0.49 | 4.92±0.36 |
拉伸强度/MPa | 冲击强度/ kJ·m-2 | 断裂 伸长率/% | |
---|---|---|---|
纯EP | 25.90±4.70 | 9.07±0.26 | 7.38±0.41 |
EP/2 %CNT?COOH | 41.28±0.17 | 11.17±0.46 | 5.99±0.24 |
EP/2 %CNT/HBPPA?1.5 | 48.59±4.61 | 11.23±1.08 | 5.64±0.39 |
EP/2 %CNT/HBPPA?3 | 53.28±1.62 | 11.19±1.02 | 7.31±0.51 |
EP/2 %CNT/HBPPA?6 | 35.68±2.26 | 7.75±0.49 | 4.92±0.36 |
1 | 曹 俊,衣惠君,洪 臻,等.反应型和添加型含磷阻燃剂阻燃环氧树脂的性能研究[J].中国塑料,2013,27(9):81⁃84. |
CAO J, YI H J, HONG Z, et al. Study on the Properties of Flame Retarded Epoxy Resin with Reactive or Additive Flame Retardant Containing⁃phosphorus[J]. China Plastics, 2013, 27(9): 81⁃84. | |
2 | 张群安,杜朝军, 史政海,等.环境友好型阻燃剂的合成及性能研究[J].中国塑料, 2015, 29(11): 97⁃101. |
ZHANG Q A, DU C J, SHI Z H, et al. Synthesis and Properties of Environment⁃friendly Flame Retardant[J]. China Plastics,2015,29(11):97⁃101. | |
3 | WU Q, ZHU W, ZHANG C, et al. Study of Fire Retardant Behavior of carbon Nanotube Membranes and Carbon Nanofiber Paper in Carbon Fiber Reinforced Epoxy Composites [J]. Carbon, 2010, 48: 1 799⁃1 806. |
4 | XU Z S, DENG N, YAN L,et al. Functionalized Multiwalled Carbon Nanotubes with Monocomponent Intumescent Flame Retardant for Reducing the Flammability and Smoke Emission Characteristics of Epoxy Resins [J]. Polymers Advanced Technologies, 2018, 29: 3 002⁃3 013. |
5 | FENG Y Z, HE C E, WEN Y F, et al. Improving Thermal and Flame Retardant Properties of Epoxy Resin by Functionalized Graphene Containing Phosphorous, Nitrogen and Silicon Elements [J]. Composites Part A, 2017, 103: 74⁃83. |
6 | JIANG W Z, HAO J W, HAN Z D. Study on the Thermal Degradation of Mixtures of Ammonium Polyphosphate and a Novel Caged Bicyclic Phosphate and Their Flame Retardant Effect in Polypropylene [J]. Polymer Degradation and Stability, 2012, 97(4): 632⁃637. |
7 | WANG Y, XU M J, LI B. Synthesis of N⁃methyl Triazine⁃ethylenediamine Copolymer Charring Foaming Agent and its Enhancement on Flame Retardancy and Water Resistance for Polypropylene Composites [J]. Polymer Degradation and Stability, 2016, 131: 20⁃29. |
8 | 胡 晋,陈小随,彭凡畅,等.超支化聚磷酰胺膨胀型阻燃剂的制备及其协同聚磷酸铵对聚丙烯的阻燃性能研究 [J].中国塑料 ,2020,34(2):16⁃22. |
HU J, CHENG X S, PENG F C, et al. Synthesis of a Novel Intumescent Flame Retardant Hyperbranched Polyphosphoramide and its Synergistic Effect on the Flame Retardancy of Polypropylene Composites with Ammonium Polyphosphate [J].China Plastic, 2020, 34 (2): 16⁃22. | |
9 | ZHANG J H, KONG Q H, WANG D Y. Simultaneously Improving the Fire Safety and Mechanical Properties of Epoxy Resin with Fe⁃CNTs via Large⁃scale Preparation [J]. Journal of Materials Chemistry A, 2018, 6: 6 376⁃6 386. |
10 | FENG Y Z, LI X G, ZHAO X Y, et al. Synergetic Improvement in Thermal Conductivity and Flame Retardancy of Epoxy/Silver Nanowires Composites by Incorporating “Branch⁃Like” Flame⁃retardant Functionalized Graphene [J]. Applied Materials & Interfaces, 2018, 10: 21 628⁃21 641. |
11 | DU B X, FANG Z G. Effects of Carbon Nanotubes on the Thermal Stability and Flame Retardancy of Intumescent Flame⁃retarded Polypropylene [J]. Polymer Degradation and Stability, 2011, 96: 1 725⁃1 731. |
12 | YU T, JING N, LI Y. Functionalized Multi⁃walled Carbon Nanotube for Improving the Flame Retardancy of Ramie/poly(lactic acid) Composite [J]. Composites Science and Technology, 2014, 104: 26⁃33. |
13 | LIU L B, XU Y, XU M J, et al. Economical and Facile Synthesis of a Highly Efficient Flame Retardant for Simultaneous Improvement of Fire Retardancy, Smoke Suppression and Moisture Resistance of Epoxy Resins [J]. Composites Part B, 2019, 167: 422⁃433. |
14 | LI C , KANG N J , LABRANDERO S D , et al. Synergistic Effect of Carbon Nanotube and Polyethersulfone on Flame Retardancy of Carbon Fiber Reinforced Epoxy Composites[J]. Industrial & Engineering Chemistry Research, 2014, 53(3):1 040⁃1 047. |
15 | WANG S J, XIN F, CHEN Y, et al. Phosphorus⁃nitrogen Containing Polymer Wrapped Carbon Nanotubes and their Flame⁃retardant Effect on Epoxy Resin [J]. Polymer Degradation and Stability, 2016, 129: 133⁃141. |
16 | 梁志彬, 赵 殊, 王兴宁, 等. 新型水溶性超支化聚酰胺⁃酯的合成[J]. 合成化学, 2012, 20(1): 32⁃35. |
LING Z B, ZHAO S, WANG X N, et al. Synthesis of Novel Water⁃soluble Hyperbranched Polyamide⁃esters [J]. Synthetic Chemistry , 2012, 20(1): 32⁃35. | |
17 | KUAN S F, CHEN W J, LI Y L, et al. Flame Retardance and Thermal Stability of Carbon Nanotube Epoxy Composite Prepared from Sol⁃gel Method [J]. Journal of Physics and Chemistry of Solids, 2010, 71: 539⁃543. |
18 | ZHANG J P, LIU L, LI A. Novel Branched Phosphorus⁃containing Flame Retardant: Synthesis and Its Application [J]. Industrial & Engineering Chemistry Research, 2016, 55(1): 10 218⁃10 225. |
19 | ZHANG L D, JEONG Y I. Crosslinked Poly(ethylene glycol) Hydrogels with Degradable Phosphamide Linkers used as a Drug Carrier in Cancer Therapy [J]. Macromolecular Bioscience, 2014, 14(3): 401⁃410. |
20 | WANG X F, ZHAN J, XING W Y, et al. Flame Retardancy and Thermal Properties of Novel UV⁃curable Epoxy Acrylate Coatings Modified by a Silicon⁃bearing Hyperbranched Polyphosphonate Acrylate [J]. Industrial & Engineering Chemistry, 2013, 52: 5 548⁃5 555. |
21 | GU L Q, QIU J H, YAO Y W, et al. Functionalized MWCNTs Modified Flame Retardant PLA Nanocomposites and Cold Rolling Process for Improving Mechanical Properties [J]. 2018, 161: 39⁃49. |
22 | SANTANU B, SUMAN K S. Soft⁃nanocomposites of Nanoparticles and Nanocarbons with Supramolecular and Polymer Gels and their Applications [J]. Chemical Reviews, 2016, 116: 11 967⁃12 028. |
[1] | 吴唯, 胡焕波, 沈辉, 赵天瑜. 4A沸石与钙镁铝水滑石对膨胀阻燃聚丙烯的双重协效阻燃作用与机理[J]. 中国塑料, 2022, 36(7): 1-7. |
[2] | 魏思淼, 邵路山, 许准, 刘艳婷, 赵思衡, 许博. 次磷酸盐⁃环四硅氧烷双基化合物复配二乙基次磷酸铝对PA6的阻燃性能研究[J]. 中国塑料, 2022, 36(7): 129-135. |
[3] | 谭立钦, 刘伟区, 梁利岩, 王硕, 冯志强, 林家明. 含巯基聚硅氧烷改性环氧树脂的制备及性能[J]. 中国塑料, 2022, 36(7): 21-29. |
[4] | 徐杰, 钟进福, 童晓茜, 李广富, 付栋梁, 李城城. 端羧基修饰单宁酸/没食子酸环氧树脂复合材料的制备与性能研究[J]. 中国塑料, 2022, 36(7): 44-50. |
[5] | 李凯泽, 辛勇. 改性碳纳米管增强热塑性聚氨酯复合材料的性能研究[J]. 中国塑料, 2022, 36(6): 1-5. |
[6] | 李金凤, 梁卓恩, 彭新龙. 膨胀型阻燃剂/二乙基次磷酸铝阻燃改性不饱和树脂基复合材料[J]. 中国塑料, 2022, 36(6): 116-123. |
[7] | 陈轲, 刘鸣飞, 赵彪, 潘凯. 有机硅改性高分子材料阻燃及耐烧蚀性能研究进展[J]. 中国塑料, 2022, 36(6): 149-154. |
[8] | 王帅, 张玉迪, 杨富凯, 徐新宇. 聚酰亚胺/多壁碳纳米管泡沫材料的制备及性能研究[J]. 中国塑料, 2022, 36(6): 39-45. |
[9] | 孙旗, 高兴, 崔雪梅, 连慧琴, 崔秀国, 汪晓东. 黑磷烯纳米阻燃剂研究进展[J]. 中国塑料, 2022, 36(5): 133-139. |
[10] | 杨木森, 钱立军, 王靖宇, 赵震, 王光禹, 辛晓华. 磷酸三苯酯和甲基八溴醚在阻燃聚苯乙烯中的协同行为研究[J]. 中国塑料, 2022, 36(5): 36-42. |
[11] | 衣惠君, 汤明, 张清怡, 摆音娜. 3D打印用光固化树脂产品性能研究[J]. 中国塑料, 2022, 36(5): 43-46. |
[12] | 李梦琪, 陈雅君. 纳米材料阻燃聚乳酸的研究进展[J]. 中国塑料, 2022, 36(4): 102-114. |
[13] | 徐伟华, 郑宇, 沈向阳, 张炎, 刘桔文, 严石静. 不同POSS对磷⁃硅协同阻燃环氧树脂性能的影响[J]. 中国塑料, 2022, 36(4): 115-120. |
[14] | 刘川, 许苗军, 王景春, 李斌. 膨胀石墨对乙烯基硅橡胶的阻燃作用研究[J]. 中国塑料, 2022, 36(4): 15-18. |
[15] | 郭意明, 董晓晨, 梁士通, 王森, 刘继纯. 石墨种类和粒径对高抗冲聚苯乙烯阻燃性能的影响及作用机制[J]. 中国塑料, 2022, 36(3): 26-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||