
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (8): 135-145.DOI: 10.19491/j.issn.1001-9278.2022.08.022
收稿日期:
2022-03-29
出版日期:
2022-08-26
发布日期:
2022-08-22
通讯作者:
辛勇(1959—),男,教授,从事聚合物微纳米结构精密成型技术研究,xinyong_sh@sina.com作者简介:
余大荣(1999—),男,在读硕士研究生,从事超高分子量聚乙烯改性研究,769208301@qq.com
基金资助:
Received:
2022-03-29
Online:
2022-08-26
Published:
2022-08-22
Contact:
XIN Yong
E-mail:769208301@qq.com;xinyong_sh@sina.com
摘要:
综述了近年来超高分子量聚乙烯(PE?UHMW)改性的最新研究进展,包括采用辐照交联法、填充改性法及共混改性法等进行摩擦性能改性,和采用涂层改性法、等离子体改性法等进行纤维表面性能改性,并讨论了摩擦性能改性与纤维的表面性能改性研究面临的挑战。
中图分类号:
余大荣, 辛勇. 超高分子量聚乙烯改性研究进展[J]. 中国塑料, 2022, 36(8): 135-145.
YU Darong, XIN Yong. Research progress in modification of ultrahigh molecular weight polyethylene[J]. China Plastics, 2022, 36(8): 135-145.
处理条件 | C—C/C—H | C—O/C—N | C=O/% | O—C=O/% |
---|---|---|---|---|
— | 95.65 | 4.4 | 0 | 0 |
100 V、80 s | 79.6 | 10.9 | 6.1 | 3.4 |
200 V、60 s | 78.9 | 11.5 | 4.8 | 4.8 |
200 V、80 s | 51.1 | 30.6 | 9.7 | 8.6 |
200 V、120 s | 74.3 | 15.0 | 5.5 | 5.2 |
处理条件 | C—C/C—H | C—O/C—N | C=O/% | O—C=O/% |
---|---|---|---|---|
— | 95.65 | 4.4 | 0 | 0 |
100 V、80 s | 79.6 | 10.9 | 6.1 | 3.4 |
200 V、60 s | 78.9 | 11.5 | 4.8 | 4.8 |
200 V、80 s | 51.1 | 30.6 | 9.7 | 8.6 |
200 V、120 s | 74.3 | 15.0 | 5.5 | 5.2 |
1 | Nikhil Avinash Patil, James Njuguna, Balasubramanian Kandasubramanian. UHMWPE for biomedical applications: performance and functionalization[J]. European Polymer Journal,2020,125:109529. |
2 | 周秀琪, 汪 杰, 方庆忠. 超高分子量聚乙烯制品的改性进展[J]. 塑料, 2021, 50(3):88⁃92. |
ZHOU X Q, WANG J, FANG Q Z. Modification progress of ultra⁃high molecular weight polyethylene products[J]. Plastics, 2021, 50(3):88⁃92. | |
3 | Doucet N, Lame O, Vigier G, et al. Sintering kinetics of UHMWPE nascent powders by high velocity compaction: Influence of molecular weight[J]. European Polymer Journal, 2013, 49(6):1 654⁃1 661. |
4 | Fedor Senatov, Gulbanu Amanbek, Polina Orlov, et al. Biomimetic UHMWPE/HA scaffolds with rhBMP⁃2 and erythropoietin for reconstructive surgery[J]. Materials Science & Engineering C,2020,111:110750. |
5 | 刘庆华, 王庆良, 沈 涵,等. 仿生UHMWPE关节软骨材料的静态黏弹性研究[J]. 医用生物力学, 2010,5:369⁃374. |
LIU Q H, WANG Q L, SHEN H, et al. Static viscoelasticity of bionic UHMWPE articular cartilage material[J]. Journal of Medical Biomechanics, 2010,5:369⁃374. | |
6 | 刘元朋. 挤压成型法制备UHMWPE薄膜[D]. 青岛:山东科技大学,2014. |
7 | Logesh Shanmugam, Kazemi M.E., Rao Zaiqing,et al. Enhanced mode I fracture toughness of UHMWPE fabric/thermoplastic laminates with combined surface treatments of polydopamine and functionalized carbon nanotubes[J]. Composites Part B,2019,178:107450. |
8 | Senra M R, Marques M, Souza D. Ultra⁃high molecular weight polyethylene bioactive composites with carbonated hydroxyapatite[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110:103938. |
9 | 邱敦瑞, 尚小杰, 徐振明. UHMWPE的生产状况及加工应用[J]. 现代塑料, 2013,6:50⁃53. |
QIU D R, SHANG X J, XU Z M. Production status and processing application of UHMWPE [J]. Plastics Technolo⁃gy, 2013,6:50⁃53. | |
10 | 尹德荟, 李炳海, 许淑贞,等. 超高分子量聚乙烯的开发和应用[J]. 塑料, 1999, 28(4):16⁃23. |
YIN D H, LI B H, XU S Z,et al. Development and application of UHMWPE[J]. Plastics, 1999, 28(4):16⁃23. | |
11 | 林 宇. 基于体系动态流变行为研究含氟助剂对超高分子量聚乙烯分子链的解缠结机制[D].福州:福建师范大学,2018 |
12 | Rina Sa, Wei Zhenhai, Yan Yan,et al. Catechol and epoxy functionalized ultrahigh molecular weight polyethylene (UHMWPE) fibers with improved surface activity and interfacial adhesion[J]. Composites Science and Technology,2015,113:54⁃62. |
13 | Yoshimitsu Okazaki. Effects of fine microstructures and precipitates of laser⁃sintered Co⁃28Cr⁃6Mo alloy femoral components on wear rate of UHMWPE inserts in a knee joint simulator[J]. Journal of the Mechanical Behavior of Biomedical Materials,2020,112:103998. |
14 | 孙会娟.UHMWPE人工髋关节的接枝改性进展[J].材料导报,2021,35(11):11 209⁃11 215. |
SUN H J. Progress in graft modification of ultra⁃high molecular weight polyethylene artificial hip joint[J]. Mate⁃rials Reports,2021,35(11):11 209⁃11 215. | |
15 | 陆 松, 孟惠荣. 超高分子量聚乙烯齿轮在超弹性条件下的有限元分析[J]. 机械工程材料, 2004, 28(10):32⁃34. |
LU S, MENG H R. FEM analysis of ultra high molecular weight polyethylene gear under hyperelastic condition[J]. Materials for Mechanical Engineering, 2004, 28(10):32⁃34. | |
16 | Hu Pengcheng, Cheng Yuansheng, Pan Zhang, et al. A metal/UHMWPE/SiC multi⁃layered composite armor against ballistic impact of flat⁃nosed projectile[J]. Ceramics International, 2021,47(16) :22 497⁃22 513. |
17 | 俞俊钟.人工关节材料超高分子量聚乙烯的应用及其改性研究现状[J].科技资讯,2018,16(28):77⁃78. |
YU J Z. Application and modification of artificial joint material UHMWPE[J]. Science & Technology Information,2018,16(28):77⁃78. | |
18 | 谭 俊. UHMWPE基多层复合人工关节材料的研究[D]. 大连:大连理工大学,2014. |
19 | 葛世荣, 王庆良. 人工关节改性材料的生物摩擦学研究[J]. 医用生物力学, 2009,5:8. |
GE S R, WANG Q L. Investigation on biotribology of the modified artificial joint materials[J]. Journal of Medical Biomechanics,2009,5:8. | |
20 | Okazaki Y, Hosoba M, Miura S, et al. Effects of knee simulator control method and radiation dose on uhmwpe wear rate, and relationship between wear rate and clinical revision rate in national joint registry[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 90:182⁃190. |
21 | Yoshimitsu Okazaki. Effects of fine microstructures and precipitates of laser⁃sintered Co⁃28Cr⁃6Mo alloy femoral components on wear rate of UHMWPE inserts in a knee joint simulator[J]. Journal of the Mechanical Behavior of Biomedical Materials,2020,112:103998. |
22 | 何振强,薛 平,戚晓芸.γ射线辐照交联改性超高相对分子质量聚乙烯的研究[J].中国塑料,2013,27(7):62⁃67. |
HE Z Q, XUE P, QI X Y. Research on ultrahigh molecular weight polyethylene crosslinked by gamma irradiation[J]. China Plastics,2013,27(7):62⁃67. | |
23 | 田 婷,蒋思源,何 敏,等.辐照交联在高分子材料耐热改性中的应用进展[J].上海塑料,2021,49(1):28⁃33. |
TIAN T, JIANG S Y, HE M, et al. Application progress of irradiation crosslinking in heat⁃resistant modification of polymer materials[J]. Shanghai Plastics,2021,49(1):28⁃33. | |
24 | 吴江渝, 钟 翔, 付 俊,等. 电子束辐照交联超高分子量聚乙烯等温结晶动力学[J]. 武汉工程大学学报, 2012,6:42⁃48. |
WU J Y, ZHONG X, FU J, et al. Isothermal crystallization kinetics of electron beam cross⁃linked ultra⁃high molecular weight polyethylene[J]. Journal of Wuhan Institute of Technology, 2012,6:42⁃48. | |
25 | Yas Khalil, Adam Kowalski, Neil Hopkinson. Influence of energy density on flexural properties of laser⁃sintered UHMWPE[J]. Additive Manufacturing,2016,10: 67⁃75. |
26 | Schwiesau Jens, Fritz Bernhard, Bergmann Georg,et al. Influence of radiation conditions on the wear behaviour of vitamin E treated UHMWPE gliding components for total knee arthroplasty after extended artificial aging and simulated daily patient activities[J]. Journal of the Mechanical Behavior of Biomedical Materials,2021,122:104652 |
27 | Galliera E, Ragone V, Marazzi M G, et al. Vitamin E⁃stabilized UHMWPE: biological response on human osteoblasts to wear debris[J]. Clinica Chimica Acta, 2018, 486: 18⁃25. |
28 | Lan Ri Tong, Ren Yue, Wei Xin,et al. Synergy between vitamin E and D⁃sorbitol in enhancing oxidation stability of highly crosslinked ultrahigh molecular weight polyethylene[J]. Acta Biomaterialia,2021,134:302⁃312. |
29 | Kang Xueqin, Zong Xiaohui, Zhang Peng,et al. Effects of epigallocatechin gallate incorporation in UHMWPE on biological behavior, oxidative degradation, mechanical and tribological performance for biomedical applications[J]. Tribology International,2021,158:106887. |
30 | 吕 方, 朱光明, 胡巧青,等.玻璃微珠填充改性聚合物研究进展[J]. 玻璃钢/复合材料, 2008, 3:53⁃56. |
LV F, ZHU M G, HU Q Q, et al. Advances of glass bead filled polymer composites[J]. Composites Science and Engineering, 2008, 3:53⁃56. | |
31 | 孙会娟. 纳米材料改性UHMWPE人工关节的研究进展[J]. 塑料科技, 2020, 48(3):119⁃122. |
SUN H J. Research progress of UHMWPE artificial joint modified by nanomaterials[J]. Plastics Science and Technology,2020, 48(3):119⁃122. | |
32 | Wannasri S., PaninS.V., IvanovaL.R.,et al. Piriyayon. Increasing wear resistance of UHMWPE by mechanical activation and chemical modification combined with addition of nanofibers[J]. Procedia Engineering,2009,1(1) :67⁃70. |
33 | Diabb Zavala José M.,Leija Gutiérrez Héctor Manuel, Segura⁃Cárdenas Emmanuel,et al. Manufacture and mechanical properties of knee implants using SWCNTs/UHMWPE composites[J]. Journal of the Mechanical Behavior of Biomedical Materials,2021,120:104554. |
34 | Dalai N. UHMWPE/nanodiamond nanocomposites for orthopaedic applications: a novel sandwich configuration based approach[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 116:104327. |
35 | Hussain O, Ahmad B, Saleem S. Tribological performance of biomedical grade UHMWPE/nano⁃Al2O3/Vitamin⁃C hybrid composite for cartilage replacements[J]. Materials Letters, 2021,586:129515. |
36 | Yang Z, Guo Z, Yang Z, et al. Study on tribological properties of a novel composite by filling microcapsules into UHMWPE matrix for water lubrication[J]. Tribology International, 2021, 153:106629. |
37 | Wang C, Bai X, Guo Z, et al. Friction and wear behaviours of polyacrylamide hydrogel microsphere/UHMWPE composite under water lubrication[J]. Wear, 2021, 477(7):203841. |
38 | 李炳海, 陈 勇, 安 峰. PP/UHMWPE共混物力学性能的研究[J]. 塑料工业, 2003, 31(7):9⁃13. |
LI B H, CHEN Y, AN F. Study on mechanical properties of PP/UHMWPE blends[J]. China Plastics Industry, 2003, 31(7):9⁃13. | |
39 | Borges R A, Choudhury D, Zou M. 3D printed PCU/UHMWPE polymeric blend for artificial knee meniscus[J]. Tribology International, 2018, 122: 1⁃7. |
40 | Visco Annamaria, Richaud Emmanuel, Scolaro Cristina. Ageing of UHMWPE in presence of simulated synovial fluid[J]. Polymer Degradation and Stability,2021:109605. |
41 | ChengBingxue,DuanHaitao, Song Chen,et al. Phase morphology and tribological properties of PI/UHMWPE blend composites[J]. Polymer,2020,202:122658. |
42 | Cheng B, Duan H, Chen S, et al. Effects of thermal aging on the blend phase morphology and tribological performance of PI/UHMWPE blend composites[J]. Wear, 2021, 477:203840. |
43 | 罗 峻, 邓 华. 超高分子量聚乙烯纤维表面改性方法研究进展[J]. 中国纤检, 2019,8:124⁃127. |
LU J, DENG H. Research progress on surface modification methods of ultra⁃high molecular weight polyethylene fiber[J].China Fiber Inspection, 2019,8:124⁃127. | |
44 | Aawa A, Td B, Henab C. Fiber tortuosity and its effects on shock transfer characteristics of ultra high molecular weight polyethylene (UHMWPE) fibers embedded in a polyurethane composite structure[J]. Composites Science and Technology,2020, 192:108112. |
45 | Chhetri Suman, Bougherara Habiba. A comprehensive review on surface modification of UHMWPE fiber and interfacial properties[J]. Composites Part A,2021,140:106146. |
46 | Silverstein M S, Breuer O. Relationship between surface properties and adhesion for etched ultra⁃high⁃molecular weight polyethylene fibers[J]. Composite Science Technology,1993,48:151⁃157 |
47 | 田晓伟. UHMWPE纤维表面改性技术的研究进展[J]. 纤维复合材料, 2006, 23(4):60⁃63. |
TIAN X W. Research progress in surface modification of UHMWPE fiber[J]. Fiber Composites, 2006, 23(4):60⁃63. | |
48 | 李美霞,吕汪洋,王刚强,等.超高分子量聚乙烯纤维表面改性研究进展[J].现代纺织技术,2022:1⁃11. |
LI M X, LV W Y, WANG G Q, et al. Research progress on surface modification of ultra⁃high molecular weight polyethyene fibers[J]. Advanced Textile Technology,2022:1⁃11. | |
49 | Suman Chhetri, Ahmed Sarwar, Jada Steer, et al. Design of a Bi⁃layer coating configuration on ultra⁃high molecular weight polyethylene (UHMWPE) fibre surface to derive synergistic response on interfacial bond strength[J]. Composites Part A, 2022, 152:106678. |
50 | 董庆亮. 多巴胺改性芳纶纤维及其复合材料界面性能研究[D]. 哈尔滨:哈尔滨工业大学, 2014 |
51 | Feng M, Li W, Liu X, et al. Copper⁃polydopamine composite coating decorating UHMWPE fibers for enhan⁃cing the strength and toughness of rigid polyurethane composites[J]. Polymer Testing, 2021, 93:106883. |
52 | Yu Jiali, Chen Houdao, Huang Heng,et al. Protein⁃induced decoration of applying MXene directly to UHMWPE fibers and fabrics for improved adhesion properties and electronic textiles[J]. Composites Science and Technology,2022,218:109158. |
53 | 党 哲,高东强,杨 杰,等.PEEK改性研究进展[J].工程塑料应用,2020,48(9):166⁃170. |
DANG Z, GAO D Q, YANG J, et al. Research progress on modification of PEEK[J]. Engineering Plastics Application,2020,48(9):166⁃170. | |
54 | 康玉婵,闫纪源,彭程凯, 等.等离子体介质阻挡放电氟化改性环氧树脂的时效性[J].强激光与粒子束,2021,33(6):161⁃171. |
KANG Y C, YAN J Y, PENG C K, et al. Plasma dielectric barrier discharge fluorination modified epoxy resin and its ageing behavior[J]. High Power Laser and Particle Beams,2021,33(6):161⁃171. | |
55 | 郑洋洋,宋小三,王三反.概述低温等离子体技术及其改性高分子材料研究进展[J].应用化工,2020,49(9):2 346⁃2 350. |
ZHENG Y Y, SONG X S, WANG S F. Review of low temperature plasma technology and its research progress in modified polymer materials[J]. Applied Chemical Industry,2020,49(9):2 346⁃2 350. | |
56 | 任 煜,张 银,王晓娜, 等.空气介质阻挡放电对超高分子量聚乙烯纤维表面性能及粘结力的影响研究[J].高分子学报,2016,10:1 439⁃1 446. |
REN Y, ZHANG Y, WANG X N, et al. Surface properties and adhesion force of air dielectric barrier discharge treated UHMWPE fibers[J]. Acta Polymerica Sinica,2016,10:1 439⁃1 446. | |
57 | Ren Y, Ding Z, Wang C, et al. Influence of DBD plasma pretreatment on the deposition of chitosan onto UHMWPE fiber surfaces for improvement of adhesion and dyeing properties[J]. Applied Surface Science, 2016, 396(2):1 571⁃1 579. |
58 | Steinke Kelsey, Sodano Henry A. Improved inter⁃yarn friction and ballistic impact performance of zinc oxide nanowire coated ultra⁃high molecular weight polyethylene (UHMWPE)[J]. Polymer,2021,231:124125. |
59 | Jin X, Wang W, Xiao C, et al. Improvement of coating durability, interfacial adhesion and compressive strength of UHMWPE fiber/epoxy composites through plasma pre⁃treatment and polypyrrole coating[J]. Composites Science & Technology, 2016, 128(18):169⁃175. |
[1] | 张林, 夏章川, 何亚东, 信春玲, 王瑞雪, 任峰. 等离子体射流载气流量大小对玻璃纤维改性效果影响的研究[J]. 中国塑料, 2022, 36(9): 7-15. |
[2] | 马超, 马兰荣, 魏辽, 尹慧博, 林祥. 聚乙醇酸材料的加工改性及其水下降解特性的研究进展[J]. 中国塑料, 2022, 36(9): 74-84. |
[3] | 马国成, 何圳, 陈少军. 醋酸纤维素的降解性研究进展[J]. 中国塑料, 2022, 36(9): 111-121. |
[4] | 杨超永, 郭金强, 王富玉, 张玉霞. 高性能塑料薄膜制备方法及改性研究进展[J]. 中国塑料, 2022, 36(9): 167-179. |
[5] | 喻九阳, 王众浩, 陈琦, 夏亚忠. 基于阀体制造的先进树脂基复合材料性能研究[J]. 中国塑料, 2022, 36(8): 16-22. |
[6] | 陈佰全, 郑友明, 田际波, 张磊, 王金松, 林夏洁, 段亚鹏. 高含量玻璃纤维增强阻燃聚酰胺材料的制备与性能[J]. 中国塑料, 2022, 36(8): 42-48. |
[7] | 冯凯, 李永青, 马秀清, 韩颖. 聚甲醛增韧改性的研究进展及应用[J]. 中国塑料, 2022, 36(7): 157-164. |
[8] | 陈轲, 刘鸣飞, 赵彪, 潘凯. 有机硅改性高分子材料阻燃及耐烧蚀性能研究进展[J]. 中国塑料, 2022, 36(6): 149-154. |
[9] | 邓天翔, 许利娜, 李守海, 张燕, 姚娜, 贾普友, 丁海阳, 李梅. PVC接枝改性及交联改性方法研究进展[J]. 中国塑料, 2022, 36(5): 140-148. |
[10] | 王镕琛, 张恒, 孙焕惟, 段书霞, 秦子轩, 李晗, 朱斐超, 张一风. 医疗卫生用聚乳酸非织造材料的制备及其亲水改性研究进展[J]. 中国塑料, 2022, 36(5): 158-166. |
[11] | 王轲, 龙春光. PE⁃UHMW/海泡石纤维复合材料的力学性能与摩擦学性能研究[J]. 中国塑料, 2022, 36(5): 19-23. |
[12] | 赵新新, 金晓冬, 施妍, 孙诗兵, 吕锋, 田英良, 赵志永. 基于紫外⁃臭氧辐照的挤塑聚苯乙烯表面改性研究[J]. 中国塑料, 2022, 36(5): 8-13. |
[13] | 陈文静, 杨小龙, 韩顺涛, 韩颖, 马秀清. 聚丙烯腈材料改性方法及研究进展[J]. 中国塑料, 2022, 36(4): 158-165. |
[14] | 董露茜, 徐芳, 翁云宣. 聚乙醇酸改性及其应用研究进展[J]. 中国塑料, 2022, 36(4): 166-174. |
[15] | 许荣霞, 魏刚, 魏莉岚, 吴洁萃, 蒋雨江. Nano⁃SiO2及PA6复合改性PE⁃UHMW的摩擦磨损性能研究[J]. 中国塑料, 2022, 36(4): 47-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||