1 |
Mirkarimi A S M R, Bensad A S, Chiaramont D. Conversion of mixed waste plastic into fuel for diesel engines through pyrolysis process: A review[J]. Applied Energy, 2022, 327:120040
|
2 |
王红秋, 付凯妹.新形势下我国废塑料回收利用产业现状与思考[J]. 塑料工业,2022,50(6):38⁃42
|
|
WANG H Q, FU K M. Status quo and thinking of China's waste plastic recycling recycling industry under the new situation [J]. Plastics Industry, 2022,50(6): 38⁃42.
|
3 |
李超.废塑料循环或将成为白色污染“终结者”[J]. 石油石化绿色低碳,2022,7(3):1⁃5,16.
|
|
LI C. Recycling of waste plastics may become the "terminator" of white pollution[J]. Petroleum and Petrochemical Green and Low Carbon, 2022, 7(3): 1⁃5,16.
|
4 |
崔华松.挥发性有机物的污染现状及治理策略研究[J]. 清洗世界,2023,39(2):77⁃79.
|
|
CUI H S. Research on the pollution status and treatment strategies of volatile organic compounds[J]. Clean World, 2023,39(2): 77⁃79.
|
5 |
YOUSEF Samy, EIMONTAS Justas, STRIUGAS Nerijus, et al. Pyrolysis kinetic behaviour, TG⁃FTIR, and GC/MS analysis of cigarette butts and their components[J]. Biomass Conversion and Biorefinery, 2021, 156:105⁃118.
|
6 |
DIAS Pablo, JAVIMCZIK Selene, BENEVIT Mariana, et al. Recycling WEEE: Polymer characterization and pyrolysis study for waste of crystalline silicon photovoltaic modules[J]. Waste Manag, 2017, 60:716⁃722.
|
7 |
Du Y F, Ju T Y, Yuan M, et al. Pyrolysis characteristics of excavated waste and generation mechanism of gas products[J]. SSRN Electronic Journal, 2022, 370:133489.
|
8 |
邢语彤,张一唯,卢平. 粘胶纤维/杨木共水热炭的燃烧和热解特性[J/OL]. 环境工程, 2023: 1⁃10.
|
|
XING Y T, ZHANG Y W, LU P. Combustion and pyrolysis characteristics of viscose fiber/poplar wood co hydrothermal carbon[J/OL]. Environmental Engineering, 2023: 1⁃10
|
9 |
Reshad ALI, PANKA Tiwari, V.Goud VAIBHAV. Thermal and co⁃pyrolysis of rubber seed cake with waste polystyrene for bio⁃oil production[J]. Analytical and Applied Pyrolysis, 2019, 139:333⁃343.
|
10 |
DADI Suriapparao, KUMAR Dharavath, VINU Ravikrishnan. Microwave co⁃pyrolysis of PET bottle waste and rice husk: effect of plastic waste loading on product formation[J]. Sustainable Energy Technologies and Assessments,2021, 49:101781.
|
11 |
Zhou J J, Liu G J, Xu F F, et al. TG⁃FTIR and Py⁃GC/MS study of the pyrolysis mechanism and composition of volatiles from flash pyrolysis of PVC[J]. Energy Institute, 2020, 175:288⁃297.
|
12 |
李丹. 废橡塑热解机理及多环芳烃生成机制研究[D]. 天津:天津大学, 2021.
|
13 |
YOUSELF Samy, IEVA Kiminaitė, JUSTAS Eimontas, et al. Recovery of phenol and acetic acid from glass fibre reinforced thermoplastic resin using catalytic pyrolysis process on ZSM-5 zeolite catalyst and its kinetic behaviour[J]. Thermochimica Acta, 2022, 715:179293.
|
14 |
Peng H M, Li P L, Yang Q. Pyrolysis of polyester and viscose fiber over ZSM-5: synergistic effect and distribution of products[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147:12 535⁃12 545.
|
15 |
赵菲菲, 冯自松, 陈金海. 生活垃圾焚烧发电厂二噁英近零排放技术研究[J]. 环境科学与管理, 2016, 41(4):78⁃81.
|
|
ZHAO F F, FENG Z S, CHEN J H. Study on near⁃zero dioxin emission technology in domestic waste incineration power plant[J]. Environmental Science and Management, 2016, 41(4):78⁃81.
|
16 |
范春龙, 钱立新, 丁龙, 等. 废铜漆包线热解烟气中二噁英的排放特性与减排机理[J/OL]. 中国环境科学, 2023.
|
|
FAN C L, QIAN L X, DING L, et al. Emission characteristics and emission reduction mechanism of dioxins in pyrolysis flue gas of scrap copper enameled wire[J/OL]. China Environmental Science, 2023:19674.
|
17 |
邓悠娴. PVC热处理脱氯抑制二噁英生成技术[D]. 兰州:兰州大学, 2021.
|
18 |
陈春燕, 谢煜婷. 有机固废气化装置及污染治理实施的研究[J]. 资源节约与环保, 2022, 8:84⁃87.
|
|
CHEN C Y, XIE Y T. Research on organic solid waste gasification device and pollution control implementation[J]. Resource Conservation and Environmental Protection, 2022, 8:84⁃87.
|
19 |
Paladino Ombretta, Moranda Arianna. Human health risk assessment of a pilot⁃plant for catalytic pyrolysis of mixed waste plastics for fuel production[J]. Hazard Mater,2021, 405:124222.
|
20 |
谢启源, 陈丹丹, 丁延伟. 热重分析技术及其在高分子表征中的应用[J]. 高分子学报, 2022,53(2):193⁃ 210.
|
|
XIE Q Y, CHEN D D, DING Y W. Thermogravimetric analysis technology and its application in polymer characterization[J]. Journal of Polymer Science, 2022, 53 (2): 193⁃210.
|
21 |
赵凤杰,刘剑.煤的热重分析技术及其应用[J].辽宁工程技术大学学报,2005,(S2):25⁃27.
|
|
ZHAO F J, LIU J. Thermogravimetric analysis technology and its application of coal[J]. Journal of Liaoning University of Engineering and Technology, 2005, (S2): 25⁃27.
|
22 |
成青.热重分析技术及其在高分子材料领域的应用[J].广东化工,2008,35(12):50⁃52,81.
|
|
CHENG Q. Thermogravimetric analysis technology and its application in the field of polymer materials[J]. Guangdong Chemical Industry, 2008, 35 (12): 50⁃52,81.
|
23 |
Chen R Y, Xu X K, Lu S X, et al. Pyrolysis study of waste phenolic fibre⁃reinforced plastic by thermogravimetry/Fourier transform infrared/mass spectrometry analysis[J]. Energy Conversion and Management, 2018, 165(1):555⁃566.
|
24 |
Wu X J, BOURBIGOT S, LI K Y, et al. Co⁃pyrolysis characteristics and flammability of polylactic acid and acrylonitrile⁃butadiene⁃styrene plastic blend using TG, temperature⁃dependent FTIR, Py⁃GC/MS and cone calorimeter analyses[J]. Fire Safety Journal, 2022, 128:103543.
|
25 |
Tang X J, Cheng Z H, Liu J Y, et al. Dynamic pyrolysis behaviors, products, and mechanisms of waste rubber and polyurethane bicycle tires[J]. Hazardous Materials, 2021, 402(1):123516.
|
26 |
ACHYUT Panda, SATYANARAYAN Patnaik, SACHIN Kumar. Pyrolysis kinetics of keyboard plastic waste using thermogravimetric analyser to assess its energy potential[J]. Environmental Engineering and Landscape Management, 2022, 30: 259⁃267.
|
27 |
刘全义, 马凯庆, 朱倩, 等.民航客机货舱侧壁板材料的热解特性[J].塑料工业,2023,51(1):108⁃112,136.
|
|
LIU Q Y, MA K Q, ZHU Q, et al. Pyrolysis characteristics of cargo side panel materials of airliner[J]. Plastics Industry, 2023,51(1): 108⁃112,136
|
28 |
田霖, 胡建杭, 刘慧利. 基于热重⁃红外联用技术分析油酸的热解特性及动力学分析[J]. 化工进展, 2020, 39(S2):152⁃161.
|
|
TIAN L, HU J H, LIU H L. Analysis of the pyrolysis characteristics and kinetics of oleic acid based on thermogravimetric infrared spectroscopy[J]. Progress in Chemical Industry, 2020, 39 (S2): 152⁃161.
|
29 |
WANIGONO Fassinou, LAURENT Van de steene, Toure Siaka, et al. Pyrolysis of Pinus pinaster in a two⁃stage gasifier: Influence of processing parameters and thermal cracking of tar[J]. Fuel Processing Technology, 2009, 90(1):75⁃90.
|
30 |
Ma S J, Long H N, He L M, et al. Effects of pressure and residence time on limonene production in waste tires pyrolysis process[J]. Analytical and Applied Pyrolysis, 2020,151:104899.
|
31 |
LELE Aditya Dilip, JU Yiguang. Assessment of the impact of reactor residence time distribution on non⁃equilibrium product selectivity of polypropylene pyrolysis using reactive molecular dynamics simulations[J]. Fuel, 2023, 338:127328.
|
32 |
KULAS Daniel, ZOLGHADR Ali, SHONNARD David. Micropyrolysis of polyethylene and polypropylene prior to bioconversion: the effect of reactor temperature and vapor residence time on product distribution[J]. ACS Sustainable Chemistry & Engineering. 2021, 9:14 443⁃14 450.
|
33 |
Yue C Y, Gao P P, Tang L F, et al. Effects of N2/CO2 atmosphere on the pyrolysis characteristics for municipal solid waste pellets[J]. Fuel, 2022, 315:123233.
|
34 |
Yan M, Zhou X, Zhang S C, et al. Municipal solid waste pyrolysis under circulated pyrolytic gas atmosphere[J]. Material Cycles and Waste Management, 2021: 23.
|
35 |
GRZYWACZ Przemysław, CZERSKI Grzegorz, GANCZARCZYK Wojciech. Effect of pyrolysis atmosphere on the gasification of waste tire char[J]. Energies, 2021, 15: 35.
|
36 |
李亚玲,张伟民. 乳酸/己内酯共聚物的差示扫描量热分析[J]. 北京印刷学院学报, 2006, 4(13):39⁃41.
|
|
LI Y L, ZHANG W M. Differential scanning calorimetric analysis of lactic acid/caprolactone copolymer[J]. Beijing Institute of Graphic Arts, 2006, 4(13):39⁃41.
|
37 |
逄翠翠, 谢平平, 张文杰, 等. 浅谈差示扫描量热法应用[C]//中国润滑技术论坛(2018)暨中国汽车工程学会汽车燃料与润滑油分会第十八届年会论文专辑. 苏州: China Academic Journal Electronic Publishing House,2018:415⁃418.
|
38 |
Qin L B, Han J, Zhao B, et al. Thermal degradation of medical plastic waste by in⁃situ FTIR, TG⁃MS and TG⁃GC/MS coupled analyses[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136:132⁃145.
|
39 |
贺金娴. 差热分析在塑料工业中的应用[J]. 江苏化工, 1983, (2):56⁃62.
|
|
HE J X. Application of differential thermal analysis in plastics industry[J]. Jiangsu Chemical Industry, 1983, (2):56⁃62.
|
40 |
马洪亭, 王芳超, 杨国利, 等. 三种典型医疗废物热解过程的差热分析[J]. 化工进展,2012, 31(4):933⁃937.
|
|
MA H T, WANG F C, YANG G L, et al. Differential thermal analysis of pyrolysis processes of three typical medical wastes[J]. Chemical Industry and Engineering Progress, 2012, 31(4):933⁃937.
|
41 |
杨丹. 差热分析法在聚酯监测中的应用[J]. 聚酯工业, 2019, 32(3):25⁃27.
|
|
YANG D. Application of differential thermal analysis method in polyester monitoring[J]. Polyester Industry, 2019, 32(3):25⁃27.
|
42 |
李茜茜, 冯俊小. 有机固废热解动力学的研究进展[J]. 环境工程, 2022, 40(10):215⁃223.
|
|
LI Q X, FENG J X. Research progress on pyrolysis kinetics of organic solid waste[J]. Environmental Engineering, 2022, 40(10):215⁃223.
|
43 |
KREMER Irma, TOMIC Tihomir, KATANCIC Zvonimir, et al. Catalytic pyrolysis and kinetic study of real⁃world waste plastics: multi⁃layered and mixed resin types of plastics[J]. Clean Technologies and Environmental Policy, 2022, 24:10.
|
44 |
PRABHAKAR Ashok, SADHUKHAN Anup Kumar, GUPTA Parthapratim. Study of pyrolysis kinetics of coal fines using model free method[J]. Materials Today: Proceedings, 2022, 68(4):910⁃915.
|
45 |
Hu Y D, Liu J, Li X M, et al. Assessment of the pyrolysis kinetics and mechanism of vegetable⁃tanned leathers[J]. Analytical and Applied Pyrolysis, 2022, 164: 105502
|
46 |
骆强, 曲芳, 姚志鹏, 等.典型航空电缆的热解动力学研究[J].华南师范大学学报(自然科学版), 2021, 53(5):30⁃36.
|
|
LUO Q, QU F, YAO Z P, et al.Pyrolysis kinetics study of typical aviation cables[J]. South China Normal University (Natural Science Edition), 2021, 53(5):30⁃36.
|
47 |
刘盈孜. 聚酰亚胺热解机理的研究[D]. 北京:北京化工大学,2021.
|
48 |
Ding Z Y, Chen H S, Liu J Y, et al. Pyrolysis dynamics of two medical plastic wastes: drivers, behaviors, evolved gases, reaction mechanisms, and pathways[J]. Hazardous Materials, 2020, 402: 123472.
|
49 |
MENARES Tamara, HERRERA Jorge, ROMERO Romina, et al. Arteaga⁃pérez,waste tires pyrolysis kinetics and reaction mechanisms explained by TGA and Py⁃GC/MS under kinetically⁃controlled regime[J]. Waste Management, 2020, 102: 21⁃29.
|
50 |
Chen J W, Ma X Q, Yu Z S, et al. A study on catalytic co⁃pyrolysis of kitchen waste with tire waste over ZSM-5 using TG⁃FTIR and Py⁃GC/MS[J]. Bioresource Technology, 2019, 289: 12585.
|
51 |
SINGH Gajendra, VERMA Anil, ALMAS Sadiya, et al. Pyrolysis kinetic study of waste milk packets using thermogravimetric analysis and product characterization[J]. Journal of Material Cycles and Waste Management, 2019: 21.
|
52 |
Yao Z T, Yu S Q, Su W P, et al. Kinetic studies on the pyrolysis of plastic waste using a combination of modelfitting and model⁃free methods[J]. Waste Management & Research, 2020, 38: 77⁃85.
|
53 |
Pallab DAS, TIWARI Pankaj. Thermal degradation kinetics of plastics and model selection[J]. Thermochim Acta, 2017, 654: 191⁃202.
|
54 |
ABOULKAS A, El Harfi K, El Bouadili A. Thermal degradation behaviors of polyethylene and polypropylene[J]. Thermochimica Acta, 2010, 51:1 363⁃1 369.
|
55 |
张公妍, 张延松, 陈昆, 等.模式拟合法和无模式函数法对月桂酸热解行为及机理的研究[J]. 日用化学工业, 2021, 51(04): 265⁃271.
|
|
ZHANG G Y, ZHANG Y S, CHEN K, et al. Study on behavior and mechanism of lauric acid pyrolysis by mode fitting and mode afree function method[J]. Daily Chemical Industry, 2021, 51(4): 265⁃271.
|
56 |
Shan T L, Bian H G, Wang K S, et al.Study on pyrolysis characteristics and kinetics of mixed waste plastics under different atmospheres[J]. Thermochimica Acta, 2023, 722, 179467.
|
57 |
Chen Z W, Liu L H, Wang H, et al. Pyrolysis Characteristics and non⁃isothermal kinetics of integrated circuits[J]. Materials, 2022, 13(4 460): 10.
|
58 |
SAHA D, SINHA A, PATTANAYAK S . et al. Pyrolysis kinetics and thermodynamic parameters of plastic grocery bag based on thermogravimetric data using iso⁃conversional methods[J]. International Journal of Environmental Science and Technology, 2022, 19:391⁃406.
|
59 |
Chen X Y, Cai D, Yang Y M, et al. Pyrolysis kinetics of bio⁃based polyurethane: Evaluating the kinetic parameters, thermodynamic parameters, and complementary product gas analysis using TG/FTIR and TG/GC⁃MS[J]. Renewable Energy, 2023, 205:490⁃498.
|
60 |
Park Ki⁃Bum, Kim Joo⁃Sik. Pyrolysis products from various types of plastics using TG⁃FTIR at different reaction temperatures[J]. Journal of Analytical and Applied Pyrolysis, 2023, 171:105983,
|
61 |
Sun Y N, Zhang H N, Zhang F, et al. Pyrolysis properties and kinetics of photocured waste from photopolymerization⁃based 3D printing: A TG⁃FTIR/GC⁃MS study[J]. Waste Management, 2022, 150:151⁃160.
|
62 |
田原宇, 吕永康, 谢克昌. PVC的热解/红外(Py/FTIR)研究[J]. 燃料化学学报, 2002, 6:569⁃572.
|
|
TIAN Y Y, LV Y K, XIE K C. Pyrolysis and infrared (Py/FTIR) study of PVC[J]. Journal of fuel Chemistry, 2002, 6:569⁃572.
|
63 |
罗希韬, 王志奇, 武景丽, 等. 基于热重红外联用分析的PE、PS、PVC热解机理研究[J]. 燃料化学学报, 2012, 40(9): 1 147⁃1 152.
|
|
LUO X T, WANG Z Q, WU J L, et al. Study on pyrolysis mechanism of PE, PS and PVC based on thermogravimetric infrared analysis[J]. Journal of Fuel Chemistry and Technology, 2012, 40(9): 1 147⁃1 152.
|
64 |
吕全伟, 林顺洪, 柏继松, 等. 热重⁃红外联用(TG⁃FTIR)分析含油污泥⁃废轮胎混合热解特性[J]. 化工进展, 2017, 36(12): 4 692⁃4 699.
|
|
LV Q W, LIN S H, Bai J S, et al. Analysis of pyrolysis characteristics of oily sludge⁃waste tire mixture by TG⁃FTIR[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4 692⁃4 699.
|
65 |
BATUER Adili, LONG Jisheng, DU Hailiang, et al. Multi⁃products oriented co⁃pyrolysis of papers, plastics, and textiles in MSW and the synergistic effects[J]. Journal of Analytical and Applied Pyrolysis, 2022, 163:105478.
|
66 |
赫树开, 曾晓哲, 齐汝宾, 等. 基于FTIR的高压电器用T型电缆插头热解行为研究[J]. 绝缘材料, 2021, 54(4):91⁃94.
|
|
HE S K, ZENG X Z, QI R B, et al. Study on pyrolysis behavior of T⁃type cable plug for high⁃voltage electrical apparatus based on FTIR[J]. Insulating Materials, 2021, 54(4):91⁃94.
|
67 |
REINERTE Sanita, AVOTINA Liga, ZARINS Arturs, et al. TG/DTA⁃FTIR as a method for analysis of tall oil based rigid polyurethane foam decomposition gaseous products in a low oxygen environment[J]. Polymer Degradation and Stability, 2020, 180: 109313.
|
68 |
SEBASTIAN Alarcon Salinas, PETER Kusch, GERD Knupp, et al. Characterization and quantification of poly(acrylonitrile⁃co⁃1,3⁃butadiene⁃co⁃styrene)/polyamide 6 (ABS/PA6) blends using pyrolysis⁃gas chromatography (Py⁃GC) with different detector systems[J]. Journal of Analytical & Applied Pyrolysis, 2016, 122(11):452⁃457.
|
69 |
于惠梅, 张青红, 齐玲均, 等.热分析⁃质谱联用中逸出气体的脉冲热分析定量方法[J]. 中国科学:化学, 2010, 40(9): 1 402⁃1 408.
|
|
YU H M, ZHANG Q H, QI L J, et al. Quantitative method for impulsive thermal analysis of escaped gas in thermal analysis⁃mass spectrometry[J]. Science China Chemistry, 2010, 40(9): 1 402⁃1 408.
|
70 |
李卫青, 贾德民, 傅伟文, 等. 采用热重和裂解气相色谱⁃质谱分析方法剖析轮胎硫化胶[J]. 弹性体, 2002,1:52⁃57.
|
|
LI W Q, JIA D M, FU W W, et al. Analysis of tire vulcanized rubber by thermogravimetric and pyrolysis gas chromatography⁃mass spectrometry[J]. Elastomers, 2002, 1:52⁃57.
|
71 |
郭振戈. 基于py⁃gc/ms及原位红外纤维素热解机理研究[D].广州: 华南理工大学, 2016.
|
72 |
潘永红, 王万卷, 余巧玲, 等. 基于热重分析和热裂解气相色谱⁃质谱联用法的液晶聚合物热裂解成分检测[J]. 塑料科技, 2016, 44(1): 90⁃93.
|
|
PAN Y H, WANG W J, YU Q L, et al. Determination of pyrolysis components of liquid crystal polymers based on thermogravimetric analysis and pyrolysis gas chromatography⁃mass spectrometry[J]. Plastic Science and Tec⁃hnology, 2016, 44(1): 90⁃93.
|
73 |
Li B Y, Wang X L, Xia Z D, et al. Co⁃pyrolysis of waste polyester enameled wires and polyvinyl chloride: Evolved products and pyrolysis mechanism analysis[J]. Journal of Analytical and Applied Pyrolysis, 2022, 169: 105816.
|
74 |
MENARES Tapia Tamara, HERRERA Jorge, ROMERO Romina, et al. Waste tires pyrolysis kinetics and reaction mechanisms explained by TGA and Py⁃GC/MS under kinetically⁃controlled regime[J]. Waste management, 2019, 102:21⁃29.
|
75 |
Xu F F, Wang B, Yang D, et al. TG⁃FTIR and Py⁃GC/MS study on pyrolysis mechanism and products distribution of waste bicycle tire[J]. Energy Conversion and Management, 2018, 175:288⁃297.
|
76 |
Supriyanto, Ylitervo Päivi, Richards Tobias. Gaseous products from primary reactions of fast plastic pyrolysis[J].Journal of Analytical and Applied Pyrolysis, 2021, 158:105248.
|
77 |
Straka Pavel, Bičáková Olga, Šupová Monika. Slow pyrolysis of waste polyethylene terephthalate yielding paraldehyde, ethylene glycol, benzoic acid and clean fuel[J]. Polymer Degradation and Stability, 2022, 198:109900.
|
78 |
Zhou J J, Liu G J, Wang S B, et al.TG⁃FTIR and Py⁃GC/MS study of the pyrolysis mechanism and composition of volatiles from flash pyrolysis of PVC[J]. Journal of the Energy Institute, 2020, 93:2 362⁃2 370.
|
79 |
Peng Y J, Wang Y P, Ke L Y. A review on catalytic pyrolysis of plastic wastes to high⁃value products[J]. Energy Conversion and Management, 2022, 254:115243.
|
80 |
Zhang Y T, Fu Z G, Wang W, et al. Kinetics, product evolution, and mechanism for the pyrolysis of typical plastic waste[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(1): 91⁃103.
|
81 |
Xie W, Su J, Zhang X K, et al. Investigating kinetic behavior and reaction mechanism on autothermal pyrolysis of polyethylene plastic[J]. Energy, 2023, 269:126817.
|
82 |
Oenema Jogchum, Liu Haoran, Nathalie De Coensel, et al. Review on the pyrolysis products and thermal decomposition mechanisms of polyurethanes[J].Journal of Analytical and Applied Pyrolysis, 2023, 168:105723.
|
83 |
Chen G Y, Liu T C, Luan P P,et al. Distribution, migration, and removal of N⁃containing products during polyurethane pyrolysis: A review[J]. Journal of Hazardous Materials, 2023, 453:131406.
|
84 |
Yang J, Wu Y F, Zhu J L, et al. Insight into the pyrolysis behavior of polyvinyl chloride using in situ pyrolysis time⁃of⁃flight mass spectrometry: Aromatization mechanism and Cl evolution[J]. Fuel, 2023, 331:125994.
|
85 |
孙锴. 废塑料催化热解制备芳香烃的研究[D]. 杭州:浙江大学, 2021.
|
86 |
Cunliffe A M, Williams P T. Composition of oils derived from the batch pyrolysis of tyres[J]. Journal of Analytical and Applied Pyrolysis, 1998, 44(2):131⁃152.
|
87 |
Banar M, Akyıldız V, Özkan A, et al. Characterization of pyrolytic oil obtained from pyrolysis of TDF (Tire Derived Fuel)[J]. Energy Conversion and Management, 2012, 62: 22⁃30.
|
88 |
刘晓静, 吴玉锋, 李彬, 等. 废线路板典型利用处置技术污染防控研究进展[J]. 有色金属(冶炼部分), 2021,(10):71⁃80.
|
|
LIU X J, WU Y F, LI B, et al. Research progress on pollution prevention and control of typical utilization and disposal technology of waste circuit boards[J]. Nonferrous Metals(Smelting Part), 2021, (10):71⁃80.
|